41. Locality and The Fast File System

Operating System: Three Easy Pieces

AOS@UC 1

Unix operating system

Data

Z-

o The Good Thing

Data structures

+ Simple and supports the basic abstractions.
¢ Easy to use file system.
o The Problem

+ Terrible performance (2% of available disk bandwidth)

AOSs@UC 2

Problem of Unix operating system

o Unix file system treated the disk as a random-access memory.

¢+ Example of random-access blocks with Four files.

o Data blocks for each file can accessed by going back and forth the disk,

because they are are contiguous.

AT A2 B1 B2 C1 C2 D1 D2

o File b and d is deleted.
AT A2 C1 C2

o File E is created with free blocks. (spread across the block)

o Other Problem is the original block size was too small(512 bytes)

¢ To prevent internal fragmentation (waste within a block)

AOSs@UC 3

FFS: Disk Awareness is the solution

o FFS is Fast File system designed by a group at Berkeley.
+ The ideas are alive in most modern file system
o The design of FFS is that file system structures and allocation polices
to be “disk aware” and improve performance.
+ Keep same API with file system. (open (), read(), write(), etc)

¢+ Changing the internal implementation (according the physics of the disk)

AOS@UC 4

Y
©
-
—
)
-+
S
Y
R
=
©
=
c
©
c
()
0]

Single track (e.g., dark gray)

(oeu1 Yor|q 8pnjoul Jou saop dnoub 1Sl ‘S=N JI)
sJopuljAo 8AIINDBSUOD N 4O 18S
:dnoug) Jepuljhn

I

(10j02 Bwes yum syoed} ||e)
S90BLINS JUBJAYIP SSOIO. SALIP JO
J9JuU8d WOoJ} 90UB]SIP SWeS e Syoel|
:19puljhn

AOSs@UC

Organizing Structure: The Cylinder Group

o FFS divides the disk into a bunch of groups. (Cylinder Group)

+ Modern file system call cylinder group as block group.

GO | G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 | G9

o These groups are uses to improve seek performance.
+ By placing two files within the same group.
+ Accessing one after the other will not be long seeks across the disk.

+ FFS needs to allocate files and directories within each of these groups.

AOSs@UC 6

Organizing Structure: The Cylinder Group (Cont.)

Data

o Data structure for each cylinder group.
+ A copy of the super block(S) for reliability reason.

+ inode bitmap(ib) and data bitmap(db) to track free inode and data
block.

+ inodes and data block are same to the previous very-simple file
system(VSFS).

AOSs@UC

How To Allocate Files and Directories?

o Policy is "keep related stuff together”

* l.e. keep unrelated stuff far apart

o The placement of directories

+ Find the cylinder group with a low number of allocated directories and a

high number of free inodes.

¢ Put the directory data and inode in that group.

o The placement of files.
+ Allocate data blocks of a file in the same group as its inode

+ It places all files in the same group as their directory

AOSs@UC 8

Example

o Lets suppose we need to create 3 dirs (/, /a, and /b) and four

files (/a/c, /a/d, /al/e, /b/f)

group inodes data group 1inodes data
0 /————————- I 0 /-———————- T
1 acde—————- accddee——- 1l a—m————- a—————————
2 bf-——————- pff-——————- 2 b————————-— b-———————-
3 ————————— === 3 c—————————— CC————————
4 ————————= ————————— 4 d————————- dd———————-
S —m———————— === 5 e————————-— ee————————
6 —————mmm e e 6 f————————— ff——-———
7T - 7 o———

Files in the same dir
are usually accessed
sequentially

Name locality is
not preserved

AOSs@UC 9

FFS Locality for SEER Traces.

o How “far away” file accesses were

from one another in the directory tree.

e A 100%
proc/src/foo.c

proc/sre/bar.c
the distance of two file access is 1

80%

proc/src/foo.c
proc/obj/foo.o

the distance of two file access is 2
g J

60%

40%

o
X Random

Trace

Cumulative Frequency

* 7% of file accesses to the same file
20%
+ Nearly 40% of file accesses in the same

H 0%
directory . > e - o

¢ 25% of file accesses were two distances Path Difference

AOSs@UC 10

The Large-File Exception

o General policy of file placement
+ Entierly fill the block group it is first place within

+ Hurt file-access locality from “related” file being placed

GO GT G2 G3 G4 G5 G6 G7 G8 G9
01234 :
E6789 G: block group

o For large files, chunks are spread across the disk
¢ Hurt performance, but it can be addressed by choosing chunk size

+ Amortization: reducing overhead by doing more work

GO G1 G2 G3 G4 G5 G6 G7 G8 G9

90 01 23 45 67

AOSs@UC 1

Amortization: How Big Do Chunks Have To Be?

o Computation of the size of chunk

¢ Desire 50% of peak disk performance
10M 7 90%, 3.69M o half of time seeking and
ERRIVE . half of time transferring
K 50%, 409.6K | : :
2 5 ¢ Disk bandwidth: 40 MB/s
.§ ' ' ¢ Positioning time: 10ms
~ 32K
o) 40 MB 1024 KB 1 see
@ * Y Tiwm -1000%-101%1?:409.6[(3
ém K . | o Transfer only 409.6 KB every time
I I I 1 .
0% 25% 50% 75% 100% seeking
Percent Bandwidth (Desired) ¢ 99% of peak performance on 3.69MB
chunk size

AOSs@UC 12

The Large-File Exception in FSS

o A simple approach based on the structure of inode

+ Each subsequent indirect blocks, and all the blocks it pointed to, placed

in a different block group.
¢ Every 1024 blocks (4MB) of the file in a separate group (32-bit addr.)

S| ib | db Data
AMB=
4KB(indirect block size)/
12 direct 48 (blOCk addr)*
blocks { 4KB (block ins the second

indirect {_——» block group)
blocks

inode

Data

AOSs@UC 13

A few other Things about FFS

o Internal fragmentation
o Sub-blocks
¢ Ex) Create a file with 1 KB : use two sub-blocks, not an entire 4-KB blocks
o Parameterization (old disks)
o Track buffer (modern disks)
o Long file names
+ Enabling more expressive names in the file system

o Symbolic link

AOSs@UC 14

Disclaimer: Disclaimer: This lecture slide set is used in AOS course at University of Cantabria

by V.Puente. Was initially developed for Operating System course in Computer Science Dept.
at Hanyang University. This lecture slide set is for OSTEP book written by Remzi and Andrea

O

Arpaci-Dusseau (at University of Wisconsin)

AOSs@UC 15

