
41. Locality and The Fast File System
Operating System: Three Easy Pieces

1AOS@UC

Unix operating system

p The Good Thing

w Simple and supports the basic abstractions.

w Easy to use file system.

p The Problem

w Terrible performance (2% of available disk bandwidth)

S Inodes Data

Data structures

AOS@UC 2

Problem of Unix operating system

p Unix file system treated the disk as a random-access memory.

w Example of random-access blocks with Four files.

¢ Data blocks for each file can accessed by going back and forth the disk,

because they are are contiguous.

¢ File b and d is deleted.

¢ File E is created with free blocks. (spread across the block)

p Other Problem is the original block size was too small(512 bytes)

w To prevent internal fragmentation (waste within a block)

A1 A2 B1 B2 C1 C2 D1 D2

A1 A2 C1 C2

A1 A2 E1 E2 C1 C2 E3 E4

AOS@UC 3

FFS: Disk Awareness is the solution

p FFS is Fast File system designed by a group at Berkeley.

w The ideas are alive in most modern file system

p The design of FFS is that file system structures and allocation polices

to be “disk aware” and improve performance.

w Keep same API with file system. (open(), read(), write(), etc)

w Changing the internal implementation (according the physics of the disk)

AOS@UC 4

Mechanical disk internals

AOS@UC 5

LOCALITY AND THE FAST FILE SYSTEM 3

41.2 FFS: Disk Awareness Is The Solution

A group at Berkeley decided to build a better, faster file system, which
they cleverly called the Fast File System (FFS). The idea was to design
the file system structures and allocation policies to be “disk aware” and
thus improve performance, which is exactly what they did. FFS thus ush-
ered in a new era of file system research; by keeping the same interface
to the file system (the same APIs, including open(), read(), write(),
close(), and other file system calls) but changing the internal implemen-
tation, the authors paved the path for new file system construction, work
that continues today. Virtually all modern file systems adhere to the ex-
isting interface (and thus preserve compatibility with applications) while
changing their internals for performance, reliability, or other reasons.

41.3 Organizing Structure: The Cylinder Group

The first step was to change the on-disk structures. FFS divides the
disk into a number of cylinder groups. A single cylinder is a set of tracks
on different surfaces of a hard drive that are the same distance from the
center of the drive; it is called a cylinder because of its clear resemblance
to the so-called geometrical shape. FFS aggregates each N consecutive
cylinders into group, and thus the entire disk can thus be viewed as a
collection of cylinder groups. Here is a simple example, showing the four
outer most tracks of a drive with six platters, and a cylinder group that
consists of three cylinders:

Single track (e.g., dark gray)

C
yl

in
d

e
r:

T
ra

ck
s

a
t

sa
m

e
 d

is
ta

n
ce

 f
ro

m
 c

e
n

te
r

o
f

d
ri
ve

 a
cr

o
ss

 d
iff

e
re

n
t

su
rf

a
ce

s
(a

ll
tr

a
ck

s
w

ith
 s

a
m

e
 c

o
lo

r)

C
yl

in
d

e
r

G
ro

u
p

:
S

e
t

o
f

N
 c

o
n

se
cu

tiv
e

 c
yl

in
d

e
rs

(i
f

N
=

3
,

fir
st

 g
ro

u
p

 d
o

e
s

n
o

t
in

cl
u

d
e

 b
la

ck
 t

ra
ck

)

Note that modern drives do not export enough information for the
file system to truly understand whether a particular cylinder is in use;
as discussed previously [AD14a], disks export a logical address space of
blocks and hide details of their geometry from clients. Thus, modern file

c⃝ 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Organizing Structure: The Cylinder Group

p FFS divides the disk into a bunch of groups. (Cylinder Group)

w Modern file system call cylinder group as block group.

p These groups are uses to improve seek performance.

w By placing two files within the same group.

w Accessing one after the other will not be long seeks across the disk.

w FFS needs to allocate files and directories within each of these groups.

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

AOS@UC 6

Organizing Structure: The Cylinder Group (Cont.)

p Data structure for each cylinder group.

w A copy of the super block(S) for reliability reason.

w inode bitmap(ib) and data bitmap(db) to track free inode and data

block.

w inodes and data block are same to the previous very-simple file

system(VSFS).

S ib db Inodes Data

AOS@UC 7

How To Allocate Files and Directories?

p Policy is “keep related stuff together”

w i.e. keep unrelated stuff far apart

p The placement of directories

w Find the cylinder group with a low number of allocated directories and a

high number of free inodes.

w Put the directory data and inode in that group.

p The placement of files.

w Allocate data blocks of a file in the same group as its inode

w It places all files in the same group as their directory

AOS@UC 8

Example

p Lets suppose we need to create 3 dirs (/, /a, and /b) and four

files (/a/c, /a/d, /a/e, /b/f)

AOS@UC 9

6 LOCALITY AND THE FAST FILE SYSTEM

unrealistically small numbers), and that the three directories (the root di-
rectory /, /a, and /b) and four files (/a/c, /a/d, /a/e, /b/f) are
placed within them per the FFS policies. Assume the regular files are each
two blocks in size, and that the directories have just a single block of data.
For this figure, we use the obvious symbols for each file or directory (i.e.,
/ for the root directory, a for /a, f for /b/f, and so forth).

group inodes data
0 /--------- /---------
1 acde------ accddee---
2 bf-------- bff-------
3 ---------- ----------
4 ---------- ----------
5 ---------- ----------
6 ---------- ----------
7 ---------- ----------
...

Note that the FFS policy does two positive things: the data blocks of
each file are near each file’s inode, and files in the same directory are
near one another (namely, /a/c, /a/d, and /a/e are all in Group 1, and
directory /b and its file /b/f are near one another in Group 2).

In contrast, let’s now look at an inode allocation policy that simply
spreads inodes across groups, trying to ensure that no group’s inode table
fills up quickly. The final allocation might thus look something like this:

group inodes data
0 /--------- /---------
1 a--------- a---------
2 b--------- b---------
3 c--------- cc--------
4 d--------- dd--------
5 e--------- ee--------
6 f--------- ff--------
7 ---------- ----------
...

As you can see from the figure, while this policy does indeed keep file
(and directory) data near its respective inode, files within a directory are
arbitrarily spread around the disk, and thus name-based locality is not
preserved. Access to files /a/c, /a/d, and /a/e now spans three groups
instead of one as per the FFS approach.

The FFS policy heuristics are not based on extensive studies of file-
system traffic or anything particularly nuanced; rather, they are based on
good old-fashioned common sense (isn’t that what CS stands for after
all?)1. Files in a directory are often accessed together: imagine compil-
ing a bunch of files and then linking them into a single executable. Be-
cause such namespace-based locality exists, FFS will often improve per-
formance, making sure that seeks between related files are nice and short.

1Some people refer to common sense as horse sense, especially people who work regu-
larly with horses. However, we have a feeling that this idiom may be lost as the “mechanized
horse”, a.k.a. the car, gains in popularity. What will they invent next? A flying machine??!!

OPERATING

SYSTEMS

[VERSION 0.92] WWW.OSTEP.ORG

6 LOCALITY AND THE FAST FILE SYSTEM

unrealistically small numbers), and that the three directories (the root di-
rectory /, /a, and /b) and four files (/a/c, /a/d, /a/e, /b/f) are
placed within them per the FFS policies. Assume the regular files are each
two blocks in size, and that the directories have just a single block of data.
For this figure, we use the obvious symbols for each file or directory (i.e.,
/ for the root directory, a for /a, f for /b/f, and so forth).

group inodes data
0 /--------- /---------
1 acde------ accddee---
2 bf-------- bff-------
3 ---------- ----------
4 ---------- ----------
5 ---------- ----------
6 ---------- ----------
7 ---------- ----------
...

Note that the FFS policy does two positive things: the data blocks of
each file are near each file’s inode, and files in the same directory are
near one another (namely, /a/c, /a/d, and /a/e are all in Group 1, and
directory /b and its file /b/f are near one another in Group 2).

In contrast, let’s now look at an inode allocation policy that simply
spreads inodes across groups, trying to ensure that no group’s inode table
fills up quickly. The final allocation might thus look something like this:

group inodes data
0 /--------- /---------
1 a--------- a---------
2 b--------- b---------
3 c--------- cc--------
4 d--------- dd--------
5 e--------- ee--------
6 f--------- ff--------
7 ---------- ----------
...

As you can see from the figure, while this policy does indeed keep file
(and directory) data near its respective inode, files within a directory are
arbitrarily spread around the disk, and thus name-based locality is not
preserved. Access to files /a/c, /a/d, and /a/e now spans three groups
instead of one as per the FFS approach.

The FFS policy heuristics are not based on extensive studies of file-
system traffic or anything particularly nuanced; rather, they are based on
good old-fashioned common sense (isn’t that what CS stands for after
all?)1. Files in a directory are often accessed together: imagine compil-
ing a bunch of files and then linking them into a single executable. Be-
cause such namespace-based locality exists, FFS will often improve per-
formance, making sure that seeks between related files are nice and short.

1Some people refer to common sense as horse sense, especially people who work regu-
larly with horses. However, we have a feeling that this idiom may be lost as the “mechanized
horse”, a.k.a. the car, gains in popularity. What will they invent next? A flying machine??!!

OPERATING

SYSTEMS

[VERSION 0.92] WWW.OSTEP.ORG

Name locality is
not preserved

Files in the same dir
are usually accessed
sequentially

FFS Locality for SEER Traces.

p How “far away” file accesses were

from one another in the directory tree.

w 7% of file accesses to the same file

w Nearly 40% of file accesses in the same

directory

w 25% of file accesses were two distances Path Difference

100%

80%

60%

40%

20%

0%
0 2 4 6 8 10

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

Trace

Randomx

proc/src/foo.c
proc/src/bar.c

the distance of two file access is 1

proc/src/foo.c
proc/obj/foo.o

the distance of two file access is 2

AOS@UC 10

The Large-File Exception

p General policy of file placement

w Entierly fill the block group it is first place within

w Hurt file-access locality from “related” file being placed

p For large files, chunks are spread across the disk

w Hurt performance, but it can be addressed by choosing chunk size

w Amortization: reducing overhead by doing more work

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

0 1 2 3 4
5 6 7 8 9 G: block group

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

0 1 2 3 4 5 6 79 0

AOS@UC 11

Amortization: How Big Do Chunks Have To Be?

p Computation of the size of chunk

w Desire 50% of peak disk performance

¢ half of time seeking and

half of time transferring

w Disk bandwidth: 40 MB/s

w Positioning time: 10ms

w
!"	$%
&'(

) *"+!	,%
*	$%

) *	&'(
*"""	-&

) 10	𝑚𝑠 = 409.6	𝐾𝐵

¢ Transfer only 409.6 KB every time

seeking

w 99% of peak performance on 3.69MB

chunk size

Lo
g
 (
C
hu

nk
 S

iz
e

N
ee

d
ed

)

Percent Bandwidth (Desired)

AOS@UC 12

The Large-File Exception in FSS

p A simple approach based on the structure of inode

w Each subsequent indirect blocks, and all the blocks it pointed to, placed

in a different block group.

w Every 1024 blocks (4MB) of the file in a separate group (32-bit addr.)

S ib db Inodes Data

inode

12 direct
blocks

....

S ib db Inodes Data

indirect
blocks

....

AOS@UC 13

4MB=
4KB(indirect block size)/
4B (block addr)*
4KB (block ins the second
block group)

A few other Things about FFS

p Internal fragmentation

p Sub-blocks

w Ex) Create a file with 1 KB : use two sub-blocks, not an entire 4-KB blocks

p Parameterization (old disks)

p Track buffer (modern disks)

p Long file names

w Enabling more expressive names in the file system

p Symbolic link

AOS@UC 14

p Disclaimer: Disclaimer: This lecture slide set is used in AOS course at University of Cantabria

by V.Puente. Was initially developed for Operating System course in Computer Science Dept.

at Hanyang University. This lecture slide set is for OSTEP book written by Remzi and Andrea

Arpaci-Dusseau (at University of Wisconsin)

AOS@UC 15

