
40. File system Implementation.
Operating System: Three Easy Pieces

1AOS@UC

The Way To Think

p There are two different aspects to implement file system

w Data structures

¢ What types of on-disk structures are utilized by the file system to organize its

data and metadata?

w Access methods

¢ How does it map the calls made by a process as open(), read(), write(),

etc.

¢ Which structures are read during the execution of a particular system call?

AOS@UC 2

Overall Organization of VSFS (Very Simple FS)

p Let’s develop the overall organization of the file system data structure.

p Divide the disk into blocks.

w Block size is 4 KB.

w The blocks are addressed from 0 to N -1.

0 7 8 15 16 23 24 31

32 39 40 47 48 55 56 63

AOS@UC 3

Data region in file system

p Reserve data region to store user data

w File system has to track which data block comprise a file, the size of the

file, its owner, etc.

D D

D D

0 7 8 15 16 23 24 31

32 39 40 47 48 55 56 63

Data Region

Data Region

How we store these inodes in file system?

AOS@UC 4

Inode table in file system

p Reserve some space for inode table

w This holds an array of on-disk inodes.

w Ex) inode tables : 3 ~ 7, inode size : 256 bytes

¢ 4-KB block can hold 16 inodes.

¢ The filesystem contains 80 inodes. (maximum number of files)

i d I I I I I D

D D

0 7 8 15 16 23 24 31

32 39 40 47 48 55 56 63

Data Region

Data RegionInodes

AOS@UC 5

Allocation Structures

p This is to track whether inodes or data blocks are free or allocated.

p Free-list approach is way too slow

p Use bitmap, each bit indicates free(0) or in-use(1)

w data bitmap: for data region for data region

w inode bitmap: for inode table

i d I I I I I D

D D

0 7 8 15 16 23 24 31

32 39 40 47 48 55 56 63

Data Region

Data RegionInodes

AOS@UC 6

Superblock

p Super block contains this information for particular file system

w Ex) The number of inodes, begin location of inode table. etc

w Thus, when mounting a file system, OS will read the superblock first, to

initialize various information.

S i d I I I I I D

D D

0 7 8 15 16 23 24 31

32 39 40 47 48 55 56 63

Data Region

Data RegionInodes

AOS@UC 7

File Organization: The inode

p Each inode is referred to by inode number.

w by inode number, File system calculate where the inode is on the disk.

w Ex) inode number: 32

¢ Calculate the offset into the inode region (32 x sizeof(inode) (256 bytes) = 8192

¢ Add start address of the inode table(12 KB) + inode region(8 KB) = 20 KB

0KB

Super i-bmap d-bmap

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 64 65 66 67

4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 68 69 70 71

8 9 10 11 24 25 26 27 40 41 42 43 56 57 58 59 72 73 74 75

12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63 76 77 78 79

iblock 0 iblock 1 iblock 2 iblock 3 iblock 4

4KB 8KB 12KB 16KB 20KB 24KB 28KB 32KB

The Inode table

AOS@UC 8

File Organization: The inode (Cont.)

p Disk are not byte addressable, sector addressable.

p Disk consist of a large number of addressable sectors, (512 bytes)

w Ex) Fetch the block of inode (inode number: 32)

¢ Sector address iaddr of the inode block:

¢ blk : (inumber * sizeof(inode)) / blocksize

¢ sector : (blk * blocksize) + inodeStratAddr) /sectorsize

0KB

Super i-bmap d-bmap

0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 64 65 66 67

4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 68 69 70 71

8 9 10 11 24 25 26 27 40 41 42 43 56 57 58 59 72 73 74 75

12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63 76 77 78 79

iblock 0 iblock 1 iblock 2 iblock 3 iblock 4

4KB 8KB 12KB 16KB 20KB 24KB 28KB 32KB

The Inode table

AOS@UC 9

File Organization: The inode (Cont.)

p inode have all of the information about a file

w File type (regular file, directory, etc.),

w Size, the number of blocks allocated to it.

w Protection information(who ones the file, who can access, etc).

w Time information.

w Etc.

AOS@UC 10

File Organization: The inode (Cont.)

Size Name What is this inode field for?
2 mode can this file be read/written/executed?
2 uid who owns this file?
4 size how many bytes are in this file?
4 time what time was this file last accessed?
4 ctime what time was this file created?
4 mtime what time was this file last modified?
4 dtime what time was this inode deleted?
4 gid which group does this file belong to?
2 links_count how many hard links are there to this file?
2 blocks how many blocks have been allocated to this file?
4 flags how should ext2 use this inode?
4 osd1 an OS-dependent field
60 block a set of disk pointers (15 total)
4 generation file version (used by NFS)
4 file_acl a new permissions model beyond mode bits
4 dir_acl called access control lists
4 faddr an unsupported field
12 i_osd2 another OS-dependent field

The EXT2 Inode

AOS@UC 11

The Multi-Level Index

p To support bigger files, we use multi-level index.

p Indirect pointer points to a block that contains (only) more pointers.

w inode have fixed number of direct pointers (v.gr., 12) and a single indirect

pointer.

w If a file grows large enough, an indirect block is allocated, inode’s slot for

an indirect pointer is set to point to it.

¢ (12	+	1024)	x	4	K	or	4144	KB	(assuming	4byte	addresses)

AOS@UC 12

The Multi-Level Index (Cont.)

p Double indirect pointer points to a block that contains indirect blocks.

w Allow file to grow with an additional 1024	x	1024 or 1 million 4KB blocks.

p Triple indirect pointer points to a block that contains double indirect

blocks.

p Multi-Level Index approach to pointing to file blocks.

w Ex) twelve direct pointers, a single and a double indirect block.

¢ over 4GB in size (12+1024+1024() x 4KB

p Many file system use a multi-level index.

w Linux EXT2, EXT3, NetApp’s WAFL, Unix file system.

w Linux EXT4 use extents instead of simple pointers (conceptually similar to

Segments in VM)

AOS@UC 13

The Multi-Level Index (Cont.)

Most files are small Roughly 2K is the most common size
Average file size is growing Almost 200K is the average
Most bytes are stored in large files A few big files use most of the space
File systems contains lots of files Almost 100K on average
File systems are roughly half full Even as disks grow, file system remain -50% full
Directories are typically small Many have few entries; most have 20 or fewer

File System Measurement Summary

AOS@UC 14

Aside: Linked-based approaches

p Use linked list

w Only a pointer inside the inode

p Might perform poorly in certain tasks

w Ex) Read the last inode block of a file

w Some systems use an in-memory table of link information (kept in

persistent storage too!)

p File-allocation table (FAT) uses this approach

AOS@UC 15

Directory Organization

p Directory contains a list of (entry name, inode number) pairs.

p Each directory has two extra files .”dot” for current directory

and ..”dot-dot” for parent directory

w For example, dir has three files (foo, bar, foobar)

inum | reclen | strlen | name
5 4 2 .
2 4 3 ..

12 4 4 foo
13 4 4 bar
24 8 7 foobar

on-disk for dir

AOS@UC 16

Free Space Management

p File system track which inode and data block are free or not.

p In order to manage free space, we have two simple bitmaps.

w When file is newly created, it allocated inode by searching the inode

bitmap and update on-disk bitmap.

w Pre-allocation policy is commonly used for allocate contiguous blocks.

AOS@UC 17

Access Paths: Reading a File From Disk

p Issue an open(“/foo/bar”, O_RDONLY),

w Traverse the pathname and thus locate the desired inode.

w Begin at the root of the file system (/)

¢ In most Unix file systems, the root inode number is 2

w Filesystem reads in the block that contains inode number 2.

w Look inside of it to find pointer to data blocks (contents of the root).

w By reading in one or more directory data blocks, It will find “foo” directory.

w Traverse recursively the path name until the desired inode (“bar”)

w Check finale permissions, allocate a file descriptor for this process and

returns file descriptor to user.

AOS@UC 18

Access Paths: Reading a File From Disk (Cont.)

p Issue read() to read from the file.

w Read in the first block of the file, consulting the inode to find the location

of such a block.

¢ Update the inode with a new last accessed time.

¢ Update in-memory open file table for file descriptor, the file offset.

p When file is closed:

w File descriptor should be deallocated, but for now, that is all the file

system really needs to do. No disk I/Os take place.

AOS@UC 19

Access Paths: Reading a File From Disk (Cont.)

data
bitmap

inode
bitmap

root
inode

foo
inode

bar
inode

root
data

foo
data

bar
data[0]

bar
data[1]

bar
data[2]

open(bar) read

read

read

read

read

read() read

write
read

read() read

write
read

read() read

write
read

File Read Timeline (Time Increasing Downward)

AOS@UC 20

Access Paths: Writing to Disk

p Issue write() to update the file with new contents.

p File may allocate a block (unless the block is being overwritten).

w Need to update data block, data bitmap.

w It generates five I/Os:

¢ one to read the data bitmap

¢ one to write the bitmap (to reflect its new state to disk)

¢ two more to read and then write the inode

¢ one to write the actual block itself.

w To create file, it also allocate space for directory, causing high I/O traffic.

AOS@UC 21

Access Paths: Writing to Disk (Cont.)

data
bitmap

inode
bitmap

root
inode

foo
inode

bar
inode

root
data

foo
data

bar
data[0]

bar
data[1]

bar
data[2]

create
(/foo/bar)

read
write

read

read

write

read
write

read

read

write

write()
read
write

read

write
write

write()
read
write

read

write
write

write()
read
write

read

write

write

File Creation Timeline (Time Increasing Downward)

AOS@UC 22

Caching and Buffering

p Reading and writing files are expensive, incurring many I/Os.

w For example, long pathname(/1/2/3/…./100/file.txt)

¢ One to read the inode of the directory and at least one read its data.

¢ Literally perform hundreds of reads just to open the file.

p In order to reduce I/O traffic, file systems aggressively use system

memory(DRAM) to cache.

w Early file system use fixed-size cache to hold popular blocks.

¢ Static partitioning of memory can be wasteful;

w Modem systems use dynamic partitioning approach, unified page cache.

p Read I/O can be avoided by large cache.

AOS@UC 23

Caching and Buffering (Cont.)

p Write traffic has to go to disk for persistent, Thus, cache does not

reduce write I/Os.

p File system use write buffering for write performance benefits.

w delaying writes (file system batch some updates into a smaller set of I/Os).

w By buffering a number of writes in memory, the file system can then

schedule the subsequent I/Os.

w By avoiding writes

p Some application force flush data to disk by calling fsync() or direct

I/O.

AOS@UC 24

p Disclaimer: This lecture slide set is used in AOS course at University of Cantabria by V.Puente.

Was initially developed for Operating System course in Computer Science Dept. at Hanyang

University. This lecture slide set is for OSTEP book written by Remzi and Andrea Arpaci-

Dusseau (at University of Wisconsin)

AOS@UC 25

