36. I/O Devices

Operating System: Three Easy Pieces

AOS@UC 1/0 Devices 1

/O Devices

o /O is critical to computer system to interact with systems.

o lIssue:
¢+ How should I/O be integrated into systems?
¢+ What are the general mechanisms?

¢+ How can we make the efficiently?

AOS@UC 1/0 Devices 2

Structure of input/output (I/O) device

CPU Memory
+ < > Memory Bus
@ (proprietary)
O
;) > General /O Bus
+ (e.g., PCI)
O Graphics
)
L .
% < » Peripheral I/O Bus

(e.g., SCSI, SATA, USB)

) O O

Prototypical System Architecture

CPU is attached to the main memory of the system via some kind of memory bus.

Some devices are connected to the system via a general 1/O bus.

Why not a flat design? (like in the early days)

AOS@UC 1/0 Devices

/O Architecture

o Buses

¢ Data paths that provided to enable information between CPU(s), RAM, and
I/O devices.

o 1/0 bus
¢ Data path that connects a CPU to an I/O device.

+ |/0O bus is connected to I/O device by three hardware components: /0

ports, interfaces and device controllers.

o In current system (due to scalability limitations of the buses) most

high-speed buses have migrated to point-to-point networks

AOS@UC 1/0 Devices 4

Todays Systems

o Two-socket server with Xeon E5-2600 v4

\ DRAM CPUI up to 22 cores CPU2 up to 22 cores D [jD EA% D
DDDOD g% Xeon I | Xeon 8§ OODDD
&= E5-2600 E5-2600 =
OO000<w@ome) S5 | “uw | qormm) || v | 2 | <oor>EODO0
DoDoQ o> " @ ~) <R e
' ‘ " Host to Host to Host to *

'DMI bridge | PCI bridge ‘ PCI bridge
V — V (@] 07 V
= % Total 40 O = O Total 40
HDDs A o PCle lines A o A«| PClIe lines
SATA O to CPUI O to CPU2
‘ & ~
%a e ass 50|
series SSD
USB I/O hub D
USB flash | <> "~ Intel 40GbE PCle Intel NVMe SSD
C vga N PS2 ethernet adapter
|
Keyboard | Mouse

AOS@UC 1/0 Devices 5

AOS@UC

CPU Package PCle Switch
3
bus |dev| fun| [hys 3
Memory Controller 1.2.1.0.1.0° 3.0 0
1 |pri [sec [sub 3.0 I
HE 3
Root Complex (RC)
Core bus |dev| funf | |, 1 | [bus|dev| fun| | |bus|dev]| funf g 4
10|10 1[0 Or+r2] 1] 0’
pri [sec |sub pri [sec |sub pri [sec |sub
Core Host Bridge UL - 0 Z -
‘ o
3 bus |dev| fun|
Coret— | | 17!l | == -
bus [dev]| fun pri [sec |sub bus 3
0|2]0: 2 5
pri [sec [sub L
Core 0l6l6
bus 6
E— bus |dev/| fu
PCle Bus e
pri [sec |sub |
PCle Function PCIe Bridge PCIe Endpoint

1/0 Devices

Canonical Device

o Canonical Devices has two important components.

+ Hardware interface allows the system software to control its operation.

+ Internals which is implementation specific.

Registers: Status Command Data

Micro-controller(CPU)
Memory (DRAM or SRAM or both)
Other Hardware-specific Chips

Canonical Device

AOS@UC 1/0 Devices

interface

Internals
(HW+SW)

PCle Devices (the real thing)

ACPI MCFG 4 KB PCle 64 B PCI endpoint
Table Memory Config Space Config Space Header
start bus: ;
end bus: Y
base address:
" | 4 KB config space PCle
o extended
Q 4 KB config space config BAR 5
:C: = registers
= O 4 KB config space
g e
=
o2 BAR |
%
- g (BAR 0
S & 192B
'g) &N oqe
3 b= capability
4 KB config space S structures
X . o
O class ID
m .
@ 64 B PCI config device ID
w
N space header vendor ID

AOS@UC 1/0 Devices 8

Hardware interface of Canonical Device

o status register

+ See the current status of the device

o command register

+ Tell the device to perform a certain task

o data register

¢ Pass data to the device, or get data from the device

By reading and writing above three registers,
the operating system can control device behavior.

AOS@UC 1/0 Devices 9

Hardware interface of Canonical Device (Cont.)

o Typical interaction example (Programmed 1/O or PIO)

while (STATUS == BUSY)
; //wait until device is not busy

write data to data register

write command to command register

Doing so starts the device and executes the command

while (STATUS == BUSY)

//wait until device is done with your request

.
14

AOS@UC 1/0 Devices 10

Polling

o Operating system waits until the device is ready by repeatedly

reading the status register.

+ Positive aspect is simple and working.

+ However, it wastes CPU time just waiting for the device.

o Switching to another ready process is better utilizing the CPU.

“waiting 10"

> 1 |:task 1 | P | : polling

AN

U 11111 1TlplplPlP|lP|T|1T|1T]1]1

Disk 111111111

Diagram of CPU utilization by polling

AOS@UC 1/0 Devices 1

Interrupts

o Put the I/O request process to sleep and context switch to another.

o When the device is finished, wake the process waiting for the 1/O by
interrupt (via interrupt handler or /nterrupt Service Routine ISR)

+ Positive aspect is allowed to CPU and the disk are properly utilized.

1 | : task 1 2 | :task 2

CPU 111 (111122222111]1]1

Disk 1111 (1]1

Diagram of CPU utilization by interrupt

AOS@UC 1/0 Devices 12

Polling vs interrupts

o However, “interrupts is not always the best solution”

+ |If, device performs very quickly (for example, at first poll the operation is
done), interrupt will “slow down” the system.

+ Because context switch is expensive (switching to another process)

If a device is fast 2 poll is best.
If it is slow = interrupts is better.

o Hybrid approach

+ |f poll too slow go to interrupts
o Coalescing interrupts
o Under DDoS attacks go PIO

AOS@UC 1/0 Devices 13

CPU is once again over-burdened

o CPU wastes a lot of time to copy a /arge chunk of data from memory

to the device.

“over-burdened” 1 | :task 1 2 | :task 2

>
>

C | : copy data from memory

-

CPU 111 (1]1]C|C|C|2|2|2|2|2|1]|1]1

Disk 111111111

Diagram of CPU utilization

AOS@UC 1/0 Devices 14

DMA (Direct Memory Access)

o Copy data in memory by knowing “where the data lives in memory, &

how much data to copy”

o Tell the DMA controller to do the "hard-work”

o When completed, DMA raises an interrupt, 1/0O begins on Disk.

CPU

DMA

Disk

: task 1

: copy data from memory

2

1

1

T

1

1

T

1

1

: task 2

AOS@UC

Diagram of CPU utilization by DMA

1/0 Devices

15

Device interaction

o How the CPU communicates with the device?

o Approaches

. . a way for the OS to send data to specific device
registers.
o Ex) in and out instructions on x86

o Separate I/0 and memory buses in early days

o Device registers available as if they were memory locations.

o The OS load (to read) or store (to write) to the device instead of main

memory

AOS@UC 1/0 Devices 16

Fitting Into The OS: The Device Driver

o How the OS interact with different specific interfaces?

+ Ex) We'd like to build a file system that worked on top of SCSI disks, IDE

disks, USB keychain drivers, and so on.

o Solution: Abstraction

+ Abstraction encapsulate any specifics of device interaction.

+ Only the lowest level should be aware of the specifics: called Device driver

AOS@UC 1/0 Devices 17

File system Abstraction

o File system specifics of which disk class it is using.

+ Ex) It issues block read and write request to the generic block layer.

Application user

POSIX API [open, read, write, close, etc] = = = = = = = = = -

kernel

Generic Block Interface [block read/write]

\ J

Generic Block Layer
.
Specific Block Interface [protocol-specific read/write]

The File System Stack

AOS@UC 1/0O Devices 18

Problem of File system Abstraction

o If there is a device having many special capabilities, these capabilities

will go unused in the generic interface layer.

+ Ex) SCSI devices have a rich error reporting that are mostly unused in

Linux because IDE/ATA had very limited capabilities

o Over 70% of OS code is found in device drivers.
+ Any device drivers are needed because you might plug it to your system.
+ They are primary contributor to kernel crashes, making more bugs.

¢ Driver signing in current windows system has improved its resiliency

greatly

AOS@UC 1/0 Devices 19

Case Study: A Simple IDE Disk Driver (xv6 uses QEMU IDE)

o Four types of register

¢ Control, command block, status and error
¢+ Mapped to I/O addresses

¢ in and out I/O instruction

o Book code doesn't not match with current version

o /ntegrated Drive Electronics (IDE) was developed in 1987

o Current xv6-riscv uses virtio disks

AOS@UC 1/0 Devices 20

o Control Register:

Address 0x3F6 = 0x80 (0000 1REQ): R=reset, E=0 means "enable interrupt”

o Command Block Registers:
Address 0x1FO = Data Port
Address Ox1F1 = Error
Address 0x1F2 = Sector Count
Address 0x1F3 = LBA low byte (Logical Block Address)
Address 0x1F4 = LBA mid byte
Address 0x1F5 = LBA hi byte
Address 0x1F6 = 1B1D TOP4LBA: B=LBA, D=drive
Address 0x1F7 = Command/status

AOS@UC 1/0 Devices 21

o Status Register (Address Ox1F7):

7 6 5 4 3 2
CORR
o Error Register (Address Ox1F1): (check when Status ERROR==1)

7 6 5 4 3 2

BUSY READY FAULT SEEK DRQ

BBK UNC MC IDNF MCR ABRT
¢+ BBK = Bad Block

¢+ UNC = Uncorrectable data error

¢+ MC = Media Changed

¢ |IDNF = ID mark Not Found

¢+ MCR = Media Change Requested

¢+ ABRT = Command aborted

¢+ TONF = Track 0 Not Found

¢+ AMNF = Address Mark Not Found

AOS@UC 1/0 Devices

1 0

IDDEX ERROR

1 0

TONF AMNF

22

Wait for drive to be ready. Read Status Register (Ox1F7) until drive is not busy and
READY.

Write parameters to command registers. Write the sector count, logical block address
(LBA) of the sectors to be accessed, and drive number (master=0x00 or slave=0x10, as

IDE permits just two drives) to command registers (Ox1F2-0x1F6).

Start the 1/0. by issuing read/write to command register. Write READ—WRITE

command to command register (Ox1F7).

Data transfer (for writes): Wait until drive status is READY and DRQ (drive request for
data); write data to data port.

Handle interrupts. In the simplest case, handle an interrupt for each sector transferred;
more complex approaches allow batching and thus one final interrupt when the entire

transfer is complete.

Error handling. After each operation, read the status register. If the ERROR bit is on,

read the error register for details.

AOS@UC 1/0 Devices 23

xv6: |/O buffer (node struct)

struct buf { //chunk of 512B to read/write
int flags;
uint dev;
uint sector;

struct buf *prev; // LRU cache list

struct buf *next;

struct buf *gnext; // disk queue

uchar data[512];
}i

0x1 // buffer is locked by some process
0x2 // buffer has been read from disk

0x4 // buffer needs to be written to disk

AOS@UC 1/0 Devices 24

xv6 code: Queues request (if IDE not avail) or issue the req.

void ide rw(struct buf *b) {
acquire(&ide lock);

for (struct buf **pp = &ide queue; *pp; pp=&(*pp)->gnext)

; // walk queue (beware 274 term)
*pp = b; // add request to end
(ide queue == b) // if q was empty (only has b)
ide start request(b); // send req to disk
((b->flags & ()) =)

sleep(b, &ide lock); // wait for completion and rel. lock

release(&ide lock);

AOS@UC 1/0 Devices 25

xv6 code: intercedes with the driver

static void ide start request(struct buf *b) ({

ide wait ready();

outb(0x3f6, 0); // generate interrupt
outb(0x1£f2, 1); // how many sectors to read/write?
outb(0x1£f3, b->sector & 0xff); // LBA goes here
outb(0x1f4, (b->sector >> 8) & 0xff); // ... and here
outb(0x1f5, (b->sector >> 16) & 0xff); // ... and here!
outb(0x1f6, 0xe0 | ((b->dev & 1)<<4) | ((b->sector>>24) & 0x0f)); //M or S?
if (b->flags &) {
outb(0x1£f7,); // this is a WRITE 0x20 (ide.c)
outsl(0x1f0, b->data, 512/4); // transfer data too!
} else {
outb(0x1£7,) ; // this is a READ (no data) 0x30(ide.c)
}

AOS@UC 1/0 Devices 26

Ports and Outs/ins

static inline void

outb(ushort port, uchar data)

{

| asm volatile("out %0,%1" : : "a" (data), "d" (port));

}

static inline void
Sﬂfﬁl(i”t port, const void *addr, int cnt)
{
asm volatile("cld; rep outsl"
H=S (addr),; "=c¢" (cnEt)
"d" (port), "@" (addr), "1" (cnt)
ngcls);

static inline uchar }
inb(ushort port)
{

uchar data;

asm volatile("in %1,%0" : "=a" (data) : "d" (port));
return data;

}

AOS@UC 1/0 Devices 27

xv6 code: just check the device is ready and not busy

static int ide wait ready() {
(((int r = inb(0x1£7)) &) |
'(r &))

; // loop until drive isn’t busy

Device should be initialized somewhere else (at boot)

AOS@UC 1/0 Devices 28

xv6 code: interrupt handler

void ide intr() { //called from traps()

struct buf *b;

acquire(&ide lock);

//take b as the first element in the ide queue (not shown)
(! (b->flags &) && ide wait ready(l) >= 0)
insl(0x1£f0, b->data, 512/4); // if READ: get data

b->flags |= ;

b->flags &= ~ ;

wakeup(b); // wake waiting process (equivalent to signal)
((ide_gqueue = b->gnext) != 0) // start next request
ide start request(ide queue); // (if one exists)

release(&ide lock);

AOS@UC 1/0 Devices 29

Sleep & wakeup

// Atomically release lock and sleep on chan.
// Reacquires lock when awakened.
void
sleep(void *chan, struct spinlock x1k)
{
if(proc == 0)
panic("sleep");

if(lk == 0)
panic("sleep without 1k");

// Must acquire ptable.lock in order to

// change p—>state and then call sched.

// Once we hold ptable.lock, we can be

// guaranteed that we won't miss any wakeup

// (wakeup runs with ptable.lock locked),

// so it's okay to release 1k.

if(lk !'= &ptable.lock){ //DOC: sleeplock®
acquire(&ptable.lock); //DOC: sleeplockl
release(lk);

}

// Go to sleep.
proc—>chan = chan;
proc—>state = SLEEPING;
sched();

// Tidy up.
proc—>chan = 0;

// Reacquire original lock.

if(lk != &ptable.lock){ //DOC: sleeplock2
release(&ptable. lock);
acquire(lk);

¥
}

AOS@UC

// Wake up all processes sleeping on chan.
// The ptable lock must be held.

static void

wakeupl(void *chan)

{

struct proc xp;

for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)
if(p->state == SLEEPING && p->chan == chan)
p—>state = RUNNABLE;

// Wake up all processes sleeping on chan.
void
wakeup(void xchan)
{
acquire(&ptable.lock);
wakeupl(chan);
release(&ptable. lock);
}

30

Current xv6 code (kernel/ide.c)

// Sync buf with disk.
// If B_DIRTY is set, write buf to disk, clear B_DIRTY, set B_VALID.
// Else if B_VALID is not set, read buf from disk, set B_VALID.
void
iderw(struct buf x*b) // Start the request for b. Caller must hold idelock.
t . static void

Suruch bR F#ppk idestart(struct buf xb)

if(!(b->flags & B_BUSY)) {
panic("iderw: buf not busy"); if(b == 0)
if((b->flags & (B_VALID|B_DIRTY)) == B_VALID) panic("idestart");
panic("iderw: nothing to do");
if(b->dev != 0 & !havedisk1)| idewait(0);
panic("iderw: ide disk 1 not present"); outb(0x3f6, @); // generate interrupt

outb(@x1f2, 1); // number of sectors

acquire(&idelock);
outb(0x1f3, b->sector & Oxff);

// Append b to idequeue. outb(0x1f4, (b->sector >> 8) & Oxff);
b->gnext = 0; outb(0x1f5, (b->sector >> 16) & 0xff);
for(pp=&idequeue; *pp; pp=&(*pp)->gnext) outb(0x1f6, @xe@ | ((b—>dev&l)<<4) | ((b->sector>>24)&0x0f));

’ if(b->flags & B_DIRTY){
*pp = b; outb(@x1f7, IDE_CMD_WRITE);

o outsl(0x1f@, b—>data, 512/4);

// Start disk if necessary.
if(idequeue == b) }else [{

Sdestars(b) ; | outb(@x1f7, IDE_CMD_READ);

+

// Wait for request to finish. }

// Assuming will not sleep too long: ignore proc—>killed.

while((b—>flags & (B_VALID|B_DIRTY)) != B_VALID){
sleep(b, &idelock);

}

release(&idelock);

AOS@UC 1/0 Devices 31

Current xv6 code (kernel/ide.c)

// Wait for IDE disk to become ready. case T_IRQO® + IRQ_IDE:

static int ideintr();
idewait(int checkerr) // Interrupt handler. lapiceoi();
{ : break;
TR void
S ideintr(void)
{

while(((r = inb(@x1f7)) & (IDE_BSY|IDE_DRDY)) != IDE_DRDY)
. SR e struct buf xb;

if(checkerr & (r & (IDE_DF|IDE_ERR)) != 0)
// Take first buffer off queue.

return -1;
return 0; acquire(&idelock);
} if((b = idequeue) == 0){
release(&idelock);
void // cprintf("spurious IDE interrupt\n");
ideinit(void) return;
{ }
int i; idequeue = b—>qgnext;
initlock(&idelock, "ide"); // Read data if needed.
picenable(IRQ_IDE); if(!(b—>flags & B_DIRTY) && idewait(1l) >= 0)
ioapicenable(IRQ_IDE, ncpu - 1); insl(ex1fe, b—>data, 512/4);

idewait(0);
// Wake process waiting for this buf.

// Check if disk 1 is present b->flags |= B_VALID;
outb(0x1f6, 0xed | (1<<4)); b->flags &= ~B_DIRTY;
for(i=0; i<1000; i++){ wakeup(b);
if(inb(0x1f7) '= 0){
havediskl = 1; // Start disk on next buf in queue.
break; if(idequeue != 0)
' e idestart(idequeue);

release(&idelock);
// Switch back to disk 0. }

outb(0x1f6, 0xed | (0<<4));

AOS@UC 1/0 Devices 32

o This lecture slide set has been used in AOS course at University of Cantabria by V.Puente. Was

initially developed for Operating System course in Computer Science Dept. at Hanyang
University. This lecture slide set is for OSTEP book written by Remzi and Andrea Arpaci-
Dusseau (at University of Wisconsin)

AOS@UC 1/0 Devices 33

