
36. I/O Devices
Operating System: Three Easy Pieces

AOS@UC 1I/O Devices

I/O Devices

p I/O is critical to computer system to interact with systems.

p Issue :

w How should I/O be integrated into systems?

w What are the general mechanisms?

w How can we make the efficiently?

AOS@UC 2I/O Devices

Structure of input/output (I/O) device

CPU Memory

Graphics

Prototypical System Architecture

Memory Bus
(proprietary)

General I/O Bus
(e.g., PCI)

Peripheral I/O Bus
(e.g., SCSI, SATA, USB)

CPU is attached to the main memory of the system via some kind of memory bus.

Some devices are connected to the system via a general I/O bus.

AOS@UC 3

S
p
e
e
d
+
 &

 C
o
s
t+

Why not a flat design? (like in the early days)

I/O Devices

I/O Architecture

p Buses

w Data paths that provided to enable information between CPU(s), RAM, and

I/O devices.

p I/O bus

w Data path that connects a CPU to an I/O device.

w I/O bus is connected to I/O device by three hardware components: I/O

ports, interfaces and device controllers.

p In current system (due to scalability limitations of the buses) most

high-speed buses have migrated to point-to-point networks

AOS@UC 4I/O Devices

Todays Systems

AOS@UC 5

p Two-socket server with Xeon E5-2600 v4

I/O Devices

PCIe

AOS@UC 6I/O Devices

Canonical Device

p Canonical Devices has two important components.

w Hardware interface allows the system software to control its operation.

w Internals which is implementation specific.

Command Data

Canonical Device

Registers:

Micro-controller(CPU)
Memory (DRAM or SRAM or both)
Other Hardware-specific Chips

Status interface

Internals
(HW+SW)

AOS@UC 7I/O Devices

PCIe Devices (the real thing)

AOS@UC 8I/O Devices

Hardware interface of Canonical Device

p status register

w See the current status of the device

p command register

w Tell the device to perform a certain task

p data register

w Pass data to the device, or get data from the device

By reading and writing above three registers,
the operating system can control device behavior.

AOS@UC 9I/O Devices

Hardware interface of Canonical Device (Cont.)

p Typical interaction example (Programmed I/O or PIO)

while (STATUS == BUSY)

; //wait until device is not busy

write data to data register

write command to command register

Doing so starts the device and executes the command

while (STATUS == BUSY)

; //wait until device is done with your request

AOS@UC 10I/O Devices

Polling

p Operating system waits until the device is ready by repeatedly

reading the status register.

w Positive aspect is simple and working.

w However, it wastes CPU time just waiting for the device.

¢ Switching to another ready process is better utilizing the CPU.

.1 1 1 1 1 p p p p p 1 1 1 1 1CPU

Disk

Diagram of CPU utilization by polling

1 1 1 1 1

: task 11 : pollingP
“waiting IO”

AOS@UC 11I/O Devices

Interrupts

p Put the I/O request process to sleep and context switch to another.

p When the device is finished, wake the process waiting for the I/O by

interrupt (via interrupt handler or Interrupt Service Routine ISR)

w Positive aspect is allowed to CPU and the disk are properly utilized.

1 1 1 1 1 2 2 2 2 2 1 1 1 1 1CPU

Disk

Diagram of CPU utilization by interrupt

1 1 1 1 1

: task 11 : task 22

AOS@UC 12I/O Devices

Polling vs interrupts

p However, “interrupts is not always the best solution”

w If, device performs very quickly (for example, at first poll the operation is

done), interrupt will “slow down” the system.

w Because context switch is expensive (switching to another process)

p Hybrid approach

w If poll too slow go to interrupts

p Coalescing interrupts

p Under DDoS attacks go PIO

If a device is fast à poll is best.
If it is slow à interrupts is better.

AOS@UC 13I/O Devices

CPU is once again over-burdened

p CPU wastes a lot of time to copy a large chunk of data from memory

to the device.

1 1 1 1 C C C 2 2 2 2 2 1 1 1CPU

Disk

Diagram of CPU utilization

1 1 1 1 1

“over-burdened” : task 11 : task 22

C : copy data from memory

AOS@UC 14I/O Devices

DMA (Direct Memory Access)

p Copy data in memory by knowing “where the data lives in memory, &

how much data to copy”

p Tell the DMA controller to do the “hard-work”

p When completed, DMA raises an interrupt, I/O begins on Disk.

1 1 1 1 2 2 2 2 2 2 2 2 1 1 1CPU

DMA

Diagram of CPU utilization by DMA

1 1 1 1 1

C C C

Disk

: task 11 : task 22

C : copy data from memory

AOS@UC 15I/O Devices

Device interaction

p How the CPU communicates with the device?

p Approaches

w I/O instructions: a way for the OS to send data to specific device

registers.

¢ Ex) in and out instructions on x86

¢ Separate I/O and memory buses in early days

w memory-mapped I/O

¢ Device registers available as if they were memory locations.

¢ The OS load (to read) or store (to write) to the device instead of main

memory

AOS@UC 16I/O Devices

Fitting Into The OS: The Device Driver

p How the OS interact with different specific interfaces?

w Ex) We’d like to build a file system that worked on top of SCSI disks, IDE

disks, USB keychain drivers, and so on.

p Solution: Abstraction

w Abstraction encapsulate any specifics of device interaction.

w Only the lowest level should be aware of the specifics: called Device driver

AOS@UC 17I/O Devices

File system Abstraction

p File system specifics of which disk class it is using.

w Ex) It issues block read and write request to the generic block layer.

The File System Stack

kernel

Application

File System

Generic Block Layer

Device Driver [SCSI, ATA, etc]

Specific Block Interface [protocol-specific read/write]

Generic Block Interface [block read/write]

user

POSIX API [open, read, write, close, etc]

AOS@UC 18I/O Devices

Problem of File system Abstraction

p If there is a device having many special capabilities, these capabilities

will go unused in the generic interface layer.

w Ex) SCSI devices have a rich error reporting that are mostly unused in

Linux because IDE/ATA had very limited capabilities

p Over 70% of OS code is found in device drivers.

w Any device drivers are needed because you might plug it to your system.

w They are primary contributor to kernel crashes, making more bugs.

w Driver signing in current windows system has improved its resiliency

greatly

AOS@UC 19I/O Devices

Case Study: A Simple IDE Disk Driver (xv6 uses QEMU IDE)

p Four types of register

w Control, command block, status and error

w Mapped to I/O addresses

w in and out I/O instruction

p Book code doesn't not match with current version

p Integrated Drive Electronics (IDE) was developed in 1987

p Current xv6-riscv uses virtio disks

AOS@UC 20I/O Devices

p Control Register:

Address 0x3F6 = 0x80 (0000 1RE0): R=reset, E=0 means "enable interrupt”

p Command Block Registers:

Address 0x1F0 = Data Port

Address 0x1F1 = Error

Address 0x1F2 = Sector Count

Address 0x1F3 = LBA low byte (Logical Block Address)

Address 0x1F4 = LBA mid byte

Address 0x1F5 = LBA hi byte

Address 0x1F6 = 1B1D TOP4LBA: B=LBA, D=drive

Address 0x1F7 = Command/status

AOS@UC 21I/O Devices

p Status Register (Address 0x1F7):

7 6 5 4 3 2 1 0

BUSY READY FAULT SEEK DRQ CORR IDDEX ERROR

p Error Register (Address 0x1F1): (check when Status ERROR==1)

7 6 5 4 3 2 1 0

BBK UNC MC IDNF MCR ABRT T0NF AMNF

w BBK = Bad Block

w UNC = Uncorrectable data error

w MC = Media Changed

w IDNF = ID mark Not Found

w MCR = Media Change Requested

w ABRT = Command aborted

w T0NF = Track 0 Not Found

w AMNF = Address Mark Not Found

AOS@UC 22I/O Devices

p Wait for drive to be ready. Read Status Register (0x1F7) until drive is not busy and

READY.

p Write parameters to command registers. Write the sector count, logical block address

(LBA) of the sectors to be accessed, and drive number (master=0x00 or slave=0x10, as

IDE permits just two drives) to command registers (0x1F2-0x1F6).

p Start the I/O. by issuing read/write to command register. Write READ—WRITE

command to command register (0x1F7).

p Data transfer (for writes): Wait until drive status is READY and DRQ (drive request for

data); write data to data port.

p Handle interrupts. In the simplest case, handle an interrupt for each sector transferred;

more complex approaches allow batching and thus one final interrupt when the entire

transfer is complete.

p Error handling. After each operation, read the status register. If the ERROR bit is on,

read the error register for details.

AOS@UC 23I/O Devices

xv6: I/O buffer (node struct)

struct buf { //chunk of 512B to read/write

int flags;

uint dev;

uint sector;

struct buf *prev; // LRU cache list

struct buf *next;

struct buf *qnext; // disk queue

uchar data[512];

};

#define B_BUSY 0x1 // buffer is locked by some process

#define B_VALID 0x2 // buffer has been read from disk

#define B_DIRTY 0x4 // buffer needs to be written to disk

AOS@UC 24I/O Devices

xv6 code: Queues request (if IDE not avail) or issue the req.

void ide_rw(struct buf *b) {

acquire(&ide_lock);

for (struct buf **pp = &ide_queue; *pp; pp=&(*pp)->qnext)

; // walk queue (beware 2nd term)

*pp = b; // add request to end

if (ide_queue == b) // if q was empty (only has b)

ide_start_request(b); // send req to disk

while ((b->flags & (B_VALID|B_DIRTY)) != B_VALID)

sleep(b, &ide_lock); // wait for completion and rel. lock

release(&ide_lock);

}

AOS@UC 25I/O Devices

xv6 code: intercedes with the driver

static void ide_start_request(struct buf *b) {

ide_wait_ready();

outb(0x3f6, 0); // generate interrupt

outb(0x1f2, 1); // how many sectors to read/write?

outb(0x1f3, b->sector & 0xff); // LBA goes here ...

outb(0x1f4, (b->sector >> 8) & 0xff); // ... and here

outb(0x1f5, (b->sector >> 16) & 0xff); // ... and here!

outb(0x1f6, 0xe0 | ((b->dev & 1)<<4) | ((b->sector>>24) & 0x0f)); //M or S?

if(b->flags & B_DIRTY){

outb(0x1f7, IDE_CMD_WRITE); // this is a WRITE 0x20 (ide.c)

outsl(0x1f0, b->data, 512/4); // transfer data too!

} else {

outb(0x1f7, IDE_CMD_READ); // this is a READ (no data) 0x30(ide.c)

}

}

AOS@UC 26I/O Devices

Ports and Outs/ins

AOS@UC 27I/O Devices

xv6 code: just check the device is ready and not busy

static int ide_wait_ready() {

while (((int r = inb(0x1f7)) & IDE_BSY) ||

!(r & IDE_DRDY))

; // loop until drive isn’t busy

}

AOS@UC 28

Device should be initialized somewhere else (at boot)

I/O Devices

xv6 code: interrupt handler

void ide_intr() { //called from traps()

struct buf *b;

acquire(&ide_lock);

//take b as the first element in the ide_queue (not shown)

if (!(b->flags & B_DIRTY) && ide_wait_ready(1) >= 0)

insl(0x1f0, b->data, 512/4); // if READ: get data

b->flags |= B_VALID;

b->flags &= ˜B_DIRTY;

wakeup(b); // wake waiting process (equivalent to signal)

if ((ide_queue = b->qnext) != 0) // start next request

ide_start_request(ide_queue); // (if one exists)

release(&ide_lock);

}

AOS@UC 29I/O Devices

Sleep & wakeup

AOS@UC 30I/O Devices

Current xv6 code (kernel/ide.c)

AOS@UC 31I/O Devices

Current xv6 code (kernel/ide.c)

AOS@UC 32I/O Devices

p This lecture slide set has been used in AOS course at University of Cantabria by V.Puente. Was

initially developed for Operating System course in Computer Science Dept. at Hanyang

University. This lecture slide set is for OSTEP book written by Remzi and Andrea Arpaci-

Dusseau (at University of Wisconsin)

AOS@UC 33I/O Devices

