
33. Event-based Concurrency
Operating System: Three Easy Pieces

1AOS@UC

Event-based Concurrency

p A different style of concurrent programming without threads

w Used in GUI-based applications, some types of internet server-side

frameworks (v.gr. node.js).

p The problem that event-based concurrency addresses is two-fold.

w Managing concurrency correctly in multi-threaded applications.

¢ Missing locks, deadlock, and other nasty problems can arise.

w The developer has little or no control over what is scheduled at a given

moment in time.

AOS@UC 2

The Basic Idea: An Event Loop

p The approach:

w Wait for something (i.e., an “event”)to occur.

w When it does, check what type of event it is.

w Do the small amount of work it requires.

p Example:

1 while(1){
2 events = getEvents();
3 for(e in events)
4 processEvent(e); // event handler
5 }

How exactly does an event-based server determine
which events are taking place.

A canonical event-based server (Pseudo code)

AOS@UC 3

An Important API: select() (or poll())

p Check whether there is any incoming I/O that should be attended to.

w select()

¢ Lets a server determine that a new packet has arrived and is in need of

processing.

¢ Let the service know when it is OK to reply.

¢ timeout

n NULL: Cause select() to block indefinitely until some descriptor is ready.

n 0: Use the call to select() to return immediately which is the common case

int select(int nfds,
fd_set * restrict readfds,
fd_set * restrict writefds,
fd_set * restrict errorfds,
struct timeval * restrict timeout);

AOS@UC 4

Hint to the compiler: can optimize
(about the scope of the pointers)

Using select() in a trivial event based server

p How to use select() to see which network descriptors have

incoming messages upon them.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/time.h>
4 #include <sys/types.h>
5 #include <unistd.h>
6
7 int main(void) {
8 // open and set up a bunch of sockets (not shown)
9 // main loop
10 while (1) {
11 // initialize the fd_set to all zero
12 fd_set readFDs;
13 FD_ZERO(&readFDs);
14
15 // now set the bits for the descriptors
16 // this server is interested in
17 // (for simplicity, all of them from min to max)
18 …

Simple Code using select()

AOS@UC 5

Using select()(Cont.)

18 int fd;
19 for (fd = minFD; fd < maxFD; fd++)
20 FD_SET(fd, &readFDs);
21
22 // do the select
23 int rc = select(maxFD+1, &readFDs, NULL, NULL, NULL);
24
25 // check which actually have data using FD_ISSET()
26 int fd;
27 for (fd = minFD; fd < maxFD; fd++)
28 if (FD_ISSET(fd, &readFDs))
29 processFD(fd);
30 }
31 }

Simple Code using select() (Cont.)

AOS@UC 6

p A real server will require logic to sending messages, request I/O

transfers, an many other details

p TIP: processFD() can’t be blocking

Why Simpler? No Locks Needed

p The event-based server cannot be interrupted by another thread.

w With a single CPU and an event-based application.

w It is decidedly single threaded.

w Thus, concurrency bugs common in threaded programs do not manifest

in the basic event-based approach.

AOS@UC 7

A Problem: Blocking System Calls

p What if an event requires that you issue a system call that might

block? (v.gr. A HTTP request that requires to read from disk)

w There are no other threads to run: just the main event loop

w The entire server will do just that: block until the call completes.

w Huge potential waste of resources

In event-based systems: no blocking calls are allowed.

AOS@UC 8

A Solution: Asynchronous I/O

p Enable an application to issue an I/O request and return control

immediately to the caller, before the I/O has completed.

w Example:

¢ An Interface provided on Max OS X

¢ The APIs revolve around a basic structure, the struct aiocb or AIO control

block in common terminology.

¢ Standard API is defined by POSIX AIO

n Linux, BSD, Solaris, …

struct aiocb {
int aio_fildes; /* File descriptor */
off_t aio_offset; /* File offset */
volatile void *aio_buf; /* Location of buffer */
size_t aio_nbytes; /* Length of transfer */

};

AOS@UC 9

A Solution: Asynchronous I/O (Cont.)

p Asynchronous API:

w To issue an asynchronous read to a file

¢ If successful, it returns right away (i.e. to the event-based server), and the

application can continue with its work.

w Checks whether the request referred to by aiocbp has completed.

¢ An application can periodically pool the system via aio_error().

¢ If it has completed, returns success (0).

¢ If not, EINPROGRESS is returned.

int aio_read(struct aiocb *aiocbp);

int aio_error(const struct aiocb *aiocbp);

AOS@UC 10

A Solution: Asynchronous I/O (Cont.)

p Interrupt

w Remedy the overhead to check whether an I/O has completed

w Using UNIX signals to inform applications when an asynchronous I/O

completes.

w Removing the need to repeatedly ask the system: polling vs. interrupts

AOS@UC 11

ASIDE: Unix Signals

p Provide a way to communicate with a process.

w HUP (hang up), INT(interrupt), SEGV(segmentation violation), etc.

w Example: When your program encounters a segmentation violation, the

OS sends it a SIGSEGV.

#include <stdio.h>
#include <signal.h>
void handle(int arg) {

printf("stop wakin’ me up...\n");
}

int main(int argc, char *argv[]) {
signal(SIGHUP, handle);
while (1)

; // doin’ nothin’ except catchin’ some sigs
return 0;

}

A simple program that goes into an infinite loop

AOS@UC 12

ASIDE: Unix Signals (Cont.)

p You can send signals to it with the kill command line tool.

w Doing so will interrupt the main while loop in the program and run the

handler code handle().

prompt> ./main &
[3] 36705
prompt> kill -HUP 36705
stop wakin’ me up...
prompt> kill -HUP 36705
stop wakin’ me up...
prompt> kill -HUP 36705
stop wakin’ me up...

AOS@UC 13

ASIDE: async (and how strange concurrency can become)

AOS@UC 14

Another Problem: State Management

p The code of event-based approach is generally more complicated to

write than traditional thread-based code.

w It must package up some program state for the next event handler to use

when the I/O completes.

w The state the program needs is on the stack of the thread. à manual

stack management

AOS@UC 15

Another Problem: State Management (Cont.)

p Example (an event-based system) (read from disk and send to

network):

w First issue the read asynchronously.

w Then, periodically check for completion of the read.

w That call informs us that the read is complete.

w How does the event-based server know what to do?

int rc = read(fd, buffer, size);

rc = write(sd, buffer, size);

AOS@UC 16

Another Problem: State Management (Cont.)

p Solution: continuation

w Record the needed information to finish processing this event in some

data structure.

w When the event happens (i.e., when the disk I/O completes), look up the

needed information and process the event.

w Example:

¢ Store socked descriptor (sd) in a hash table indexed by file descriptor (fd)

¢ When I/O completes, use fd to access sd

¢ Send the data to the sd

p Coroutines: Apply this idea within the language

w Kotlin, python, JS, C++, etc…

w Simplifies greatly event-loop

AOS@UC 17

What is still difficult with Events.

p Systems moved from a single CPU to multiple CPUs.

w Some of the simplicity of the event-based approach disappeared.

p It does not integrate well with certain kinds of systems activity.

w Ex. Paging: A server will not make progress until page fault completes (implicit

blocking).

p Hard to manage overtime: The exact semantics of various routines changes.

p Asynchronous disk I/O never quite integrates with asynchronous network I/O

in as simple and uniform a manner as you might think.

AOS@UC 18

Beyond us

p Web programing and event-based concurrency

w You Don't Know JS: Async & Performance

https://github.com/getify/You-Dont-Know-JS/

p Task based concurrency

w Schedule interrelated task and awake them when the data (produced by

other tasks) is ready

w Usually based in a thread pool

AOS@UC 19

https://github.com/getify/You-Dont-Know-JS/

p This lecture slide set has been used in AOS course at University of Cantabria by V.Puente. Was

initially developed for Operating System course in Computer Science Dept. at Hanyang

University. This lecture slide set is for OSTEP book written by Remzi and Andrea Arpaci-

Dusseau (at University of Wisconsin)

AOS@UC 20

