
32. Common Concurrency Problems.
Operating System: Three Easy Pieces

1 AOS@UC Common Concurrency Problems

Common Concurrency Problems

p Concurrency bugs are a big issue (and are a mayor contributor to

multithread programming inherent difficulty)

w Concurrent programs have a Non-deterministic behavior

w Hence, Non-deterministic debugging make them very hard to find

p More recent work focuses on studying other types of common

concurrency bugs.

w Take a brief look at some example concurrency problems found in real

code bases.

AOS@UC 2 Common Concurrency Problems

What Types Of Bugs Exist?

p Focus on four major open-source applications [Lu08]

w MySQL, Apache, Mozilla, OpenOffice.

Application What it does Non-Deadlock Deadlock

MySQL Database Server 14 9

Apache Web Server 13 4

Mozilla Web Browser 41 16

Open Office Office Suite 6 2

Total 74 31

Concurrency Bugs In Modern Applications

AOS@UC 3 Common Concurrency Problems

Non-Deadlock Bugs

p Make up a majority of concurrency bugs.

p Two major types of non deadlock bugs:

w Atomicity violation

w Order violation

AOS@UC 4 Common Concurrency Problems

Atomicity-Violation Bugs

p The desired serializability among multiple memory accesses is

violated.

w Simple Example found in MySQL:

¢ Two different threads access the field proc_info in the struct thd.

1 Thread1::
2 if(thd->proc_info){
3 …
4 fputs(thd->proc_info , …);
5 …
6 }
7
8 Thread2::
9 thd->proc_info = NULL;

AOS@UC 5 Common Concurrency Problems

Atomicity-Violation Bugs (Cont.)

p Solution: Simply add locks around the shared-variable references.

1 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
2
3 Thread1::
4 pthread_mutex_lock(&lock);
5 if(thd->proc_info){
6 …
7 fputs(thd->proc_info , …);
8 …
9 }
10 pthread_mutex_unlock(&lock);
11
12 Thread2::
13 pthread_mutex_lock(&lock);
14 thd->proc_info = NULL;
15 pthread_mutex_unlock(&lock);

AOS@UC 6 Common Concurrency Problems

Order-Violation Bugs

p The desired order between two memory accesses is flipped.

w i.e., A should always be executed before B, but the order is not enforced

during execution.

w Example:

¢ The code in Thread2 seems to assume that the variable mThread has already

been initialized (and is not NULL).

1 Thread1::
2 void init(){
3 mThread = PR_CreateThread(mMain, …);
4 }
5
6 Thread2::
7 void mMain(…){
8 mState = mThread->State
9 }

AOS@UC 7 Common Concurrency Problems

Order-Violation Bugs (Cont.)

p Solution: Enforce ordering using condition variables

1 pthread_mutex_t mtLock = PTHREAD_MUTEX_INITIALIZER;
2 pthread_cond_t mtCond = PTHREAD_COND_INITIALIZER;
3 int mtInit = 0;
4
5 Thread 1::
6 void init(){
7 …
8 mThread = PR_CreateThread(mMain,…);
9
10 // signal that the thread has been created.
11 pthread_mutex_lock(&mtLock);
12 mtInit = 1;
13 pthread_cond_signal(&mtCond);
14 pthread_mutex_unlock(&mtLock);
15 …
16 }
17
18 Thread2::
19 void mMain(…){
20 …

AOS@UC 8 Common Concurrency Problems

Order-Violation Bugs (Cont.)

21 // wait for the thread to be initialized …
22 pthread_mutex_lock(&mtLock);
23 while(mtInit == 0)
24 pthread_cond_wait(&mtCond, &mtLock);
25 pthread_mutex_unlock(&mtLock);
26
27 mState = mThread->State;
28 …
29 }

AOS@UC 9 Common Concurrency Problems

Deadlock Bugs

w The presence of a cycle

¢ Thread1 is holding a lock L1 and waiting for another one, L2.

¢ Thread2 that holds lock L2 is waiting for L1 to be release.

Thread 1:

lock(L1);

lock(L2);

Thread 2:

lock(L2);

lock(L1);

Lock L1Thread 1

Lock L2 Thread 2

Holds

W
an

te
d
 b

y

Holds

W
an

ted
 b

y

AOS@UC 10 Common Concurrency Problems

Why Do Deadlocks Occur?

p Reason 1:

w In large code bases, complex dependencies arise between components.

p Reason 2:

w Due to the nature of encapsulation

¢ Hide details of implementations and make software easier to build in a

modular way.

¢ Such modularity does not mix well with locking.

AOS@UC 11 Common Concurrency Problems

Why Do Deadlocks Occur? (Cont.)

p Example: Java Vector class and the method AddAll()

w Locks for both the vector being added to (v1) and the parameter (v2)

need to be acquired. Required to have a thread-safe method.

¢ The routine acquires said locks in some arbitrary order (v1 then v2).

¢ If some other thread calls v2.AddAll(v1) at nearly the same time à We

have the potential for deadlock.

1 Vector v1,v2;

2 v1.AddAll(v2);

AOS@UC 12 Common Concurrency Problems

Conditional for Deadlock

p Four conditions need to hold for a deadlock to occur.

w If any of these four conditions are not met, deadlock cannot occur.

Condition Description

Mutual Exclusion Threads claim exclusive control of resources that they require.

Hold-and-wait
Threads hold resources allocated to them while waiting for additional
resources

No preemption Resources cannot be forcibly removed from threads that are holding them.

Circular wait
There exists a circular chain of threads such that each thread holds one more
resources that are being requested by the next thread in the chain

AOS@UC 13 Common Concurrency Problems

Prevention – Circular Wait

p Provide a total ordering on lock acquisition

w This approach requires careful design of global locking strategies.

p Example:

w There are two locks in the system (L1 and L2)

w We can prevent deadlock by always acquiring L1 before L2.

p TIP: Acquire the locks in the order of the address

AOS@UC 14

1. if (m1 > m2) { // grab locks in high-to-low address order
2. pthread_mutex_lock(m1);
3. pthread_mutex_lock(m2);
4. } else {
5. pthread_mutex_lock(m2);
6. pthread_mutex_lock(m1); }
7. // Code assumes that m1 != m2 (it is not the same lock)

Common Concurrency Problems

Prevention – Hold-and-wait

p Acquire all locks at once, atomically.

w This code guarantees that no untimely thread switch can occur in the

midst of lock acquisition.

w Problem:

¢ Require us to know when calling a routine exactly which locks must be held

and to acquire them ahead of time.

¢ Decrease concurrency

1 lock(prevention);
2 lock(L1);
3 lock(L2);
4 …
5 unlock(prevention);

AOS@UC 15

Prevention – Hold-and-wait

p Acquire all locks at once, atomically.

w This code guarantees that no untimely thread switch can occur in the

midst of lock acquisition.

w Problem:

¢ Require us to know when calling a routine exactly which locks must be held

and to acquire them ahead of time.

¢ Decrease concurrency

1 lock(prevention);
2 lock(L1);
3 lock(L2);
4 …
5 unlock(prevention);

AOS@UC 15Common Concurrency Problems

Prevention – No Preemption

p Multiple lock acquisition often gets us into trouble because when

waiting for one lock we are holding another.

p trylock()

w Used to build a deadlock-free, ordering-robust lock acquisition protocol.

w Grab the lock (if it is available).

w Or, return -1: you should try again later.

1 top:
2 lock(L1);
3 if(tryLock(L2) == -1){
4 unlock(L1);
5 goto top;
6 }

AOS@UC 16 Common Concurrency Problems

Prevention – No Preemption (Cont.)

p livelock

w Both systems are running through the code sequence over and over again.

w Progress is not being made.

w Solution:

¢ Add a random delay before looping back and trying the entire thing over

again.

AOS@UC 17 Common Concurrency Problems

Prevention – Mutual Exclusion

p wait-free

w Using powerful hardware instruction.

w You can build data structures in a manner that does not require explicit

locking. Lock-free.

1 int CompareAndSwap(int *address, int expected, int new){
2 if(*address == expected)
3 {
4 *address = new;
5 return 1; // success
6 }
7 return 0;
8 }

AOS@UC 18 Common Concurrency Problems

Prevention – Mutual Exclusion (Cont.)

p We now wanted to atomically increment a value by a certain amount:

w Repeatedly tries to update the value to the new amount and uses the

compare-and-swap to do so.

w No lock is acquired

w No deadlock can arise

w livelock is still a possibility.

1 void AtomicIncrement(int *value, int amount){
2 do{
3 int old = *value;
4 }while(CompareAndSwap(value, old, old+amount)==0);
5 }

AOS@UC 19 Common Concurrency Problems

Prevention – Mutual Exclusion (Cont.)

p More complex example: list insertion

w If called by multiple threads at the “same time”, this code has a race

condition.

1 void insert(int value){
2 node_t * n = malloc(sizeof(node_t));
3 assert(n != NULL);
4 n->value = value ;
5 n->next = head;
6 head = n;
7 }

AOS@UC 20 Common Concurrency Problems

Prevention – Mutual Exclusion (Cont.)

p Solution:

w Surrounding this code with a lock acquire and release.

w lock-free manner using the compare-and-swap instruction

1 void insert(int value){
2 node_t * n = malloc(sizeof(node_t));
3 assert(n != NULL);
4 n->value = value ;
5 lock(listlock); // begin critical section
6 n->next = head;
7 head = n;
8 unlock(listlock) ; //end critical section
9 }

1 void insert(int value) {
2 node_t *n = malloc(sizeof(node_t));
3 assert(n != NULL);
4 n->value = value;
5 do {
6 n->next = head;
7 } while (CompareAndSwap(&head, n->next, n));
8 }

AOS@UC 21 Common Concurrency Problems

Aside: wait-free vs lock-free

p lock-free

w Guarantee that at least one thread advance

p Wait-free

w Guarantee that all threads advance

p Equivalent?

AOS@UC 22 Common Concurrency Problems

Aside: performance too?

p Not an easy answer

w Intel Skylake (Gen 10th) Graviton 2 (AWS ARM)

AOS@UC 23 Common Concurrency Problems

https://tinyurl.com/2uyyth5p
Uses C++ std::atomic<T>::{fetch_add,compare_exchange_..,..}
under the hood CMPXCHG, FAA, XADD, XCHG, etc..

https://tinyurl.com/2uyyth5p

Deadlock Avoidance via Scheduling

p In some scenarios deadlock avoidance is preferable.

w Global knowledge is required:

¢ Which locks various threads might grab during their execution.

¢ Subsequently schedules said threads in a way as to guarantee no deadlock can

occur.

AOS@UC 24 Common Concurrency Problems

Example of Deadlock Avoidance via Scheduling (1)

p We have two processors and four threads.

w Lock acquisition demands of the threads:

w A smart scheduler could compute that as long as T1 and T2 are not run at

the same time, no deadlock could ever arise.

T1 T2 T3 T4

L1 yes yes no no

L2 yes yes yes no

CPU 1

CPU 2

T3 T4

T1 T2

AOS@UC 25 Common Concurrency Problems

Example of Deadlock Avoidance via Scheduling (2)

p More contention for the same resources

w A possible schedule that guarantees that no deadlock could ever occur.

¢ The total time to complete the jobs is lengthened considerably.

p Little utility (except in upfront know environments, like embedded)

T1 T2 T3 T4

L1 yes yes yes no

L2 yes yes yes no

CPU 1

CPU 2 T3

T4

T1 T2

AOS@UC 26 Common Concurrency Problems

Detect and Recover

p Allow deadlock to occasionally occur and then take some action.

w Example: if an OS froze, you would reboot it.

p Many database systems employ deadlock detection and recovery

technique.

w A deadlock detector runs periodically.

w Building a resource graph and checking it for cycles.

w In deadlock, the system need to be restarted.

p Transactional Memory

w Restricted Transactional Memory support in current systems: e.g., TSX on

x86 , TME on ARM, PowerPC, ….

AOS@UC 27 Common Concurrency Problems

p This lecture slide set has been used in AOS course at University of Cantabria by V.Puente. Was

initially developed for Operating System course in Computer Science Dept. at Hanyang

University. This lecture slide set is for OSTEP book written by Remzi and Andrea Arpaci-

Dusseau (at University of Wisconsin)

AOS@UC 28 Common Concurrency Problems

