
30. Condition Variables
Operating System: Three Easy Pieces

1AOS@UC

Condition Variables

p There are many cases where a thread wishes to check whether a

condition is true before continuing its execution.

p Example:

w A parent thread might wish to check whether a child thread has

completed.

w This is often called a join().

AOS@UC 2

Condition Variables (Cont.)

1 void *child(void *arg) {
2 printf("child\n");
3 // XXX how to indicate we are done?
4 return NULL;
5 }
6
7 int main(int argc, char *argv[]) {
8 printf("parent: begin\n");
9 pthread_t c;
10 Pthread_create(&c, NULL, child, NULL); // create child
11 // XXX how to wait for child?
12 printf("parent: end\n");
13 return 0;
14 }

parent: begin
child
parent: end

A Parent Waiting For Its Child

What we would like to see here is:

AOS@UC 3

Parent waiting fore child: Spin-based Approach

w This is hugely inefficient as the parent spins and wastes CPU time.

1 volatile int done = 0;
2
3 void *child(void *arg) {
4 printf("child\n");
5 done = 1;
6 return NULL;
7 }
8
9 int main(int argc, char *argv[]) {
10 printf("parent: begin\n");
11 pthread_t c;
12 Pthread_create(&c, NULL, child, NULL); // create child
13 while (done == 0)
14 ; // spin
15 printf("parent: end\n");
16 return 0;
17 }

AOS@UC 4

How to wait for a condition

p Condition variable

w Waiting on the condition

¢ An explicit queue that threads can put themselves on when some state of

execution is not as desired.

w Signaling on the condition

¢ Some other thread, when it changes said state, can wake one of those waiting

threads and allow them to continue.

AOS@UC 5

Definition and Routines

p Declare condition variable

w Proper initialization is required.

p Operation (the POSIX calls)

w The wait() call takes a mutex as a parameter.

¢ The wait() call release the lock and put the calling thread to sleep.

¢ When the thread wakes up, it must re-acquire the lock.

pthread cond t c;

pthread_cond_wait(pthread_cond_t *c, pthread_mutex_t *m); // wait()
pthread_cond_signal(pthread_cond_t *c); // signal()

AOS@UC 6

Parent waiting for Child: Use a condition variable

1 int done = 0;
2 pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
3 pthread_cond_t c = PTHREAD_COND_INITIALIZER;
4
5 void thr_exit() {
6 Pthread_mutex_lock(&m);
7 done = 1;
8 Pthread_cond_signal(&c);
9 Pthread_mutex_unlock(&m);
10 }
11
12 void *child(void *arg) {
13 printf("child\n");
14 thr_exit();
15 return NULL;
16 }
17
18 void thr_join() {
19 Pthread_mutex_lock(&m);
20 while (done == 0)
21 Pthread_cond_wait(&c, &m);
22 Pthread_mutex_unlock(&m);
23 }
24

AOS@UC 7

Parent waiting for Child: Use a condition variable

(cont.)
25 int main(int argc, char *argv[]) {
26 printf("parent: begin\n");
27 pthread_t p;
28 Pthread_create(&p, NULL, child, NULL);
29 thr_join();
30 printf("parent: end\n");
31 return 0;
32 }

AOS@UC 8

Parent waiting for Child: Use a condition variable

p Parent:

w Create the child thread and continues running itself.

w Call into thr_join() to wait for the child thread to complete.

¢ Acquire the lock

¢ Check if the child is done

¢ Put itself to sleep by calling wait()

¢ Release the lock

p Child:

w Print the message “child”

w Call thr_exit() to wake the parent thread

¢ Grab the lock

¢ Set the state variable done

¢ Signal the parent thus waking it.

AOS@UC 9

The importance of the state variable done

w Imagine the case where the child runs immediately.

¢ The child will signal, but there is no thread asleep on the condition.

¢ When the parent runs, it will call wait and be stuck.

¢ No thread will ever wake it.

1 void thr_exit() {
2 Pthread_mutex_lock(&m);
3 Pthread_cond_signal(&c);
4 Pthread_mutex_unlock(&m);
5 }
6
7 void thr_join() {
8 Pthread_mutex_lock(&m);
9 Pthread_cond_wait(&c, &m);
10 Pthread_mutex_unlock(&m);
11 }

thr_exit() and thr_join() without variable done (it is a broken code)

AOS@UC 10

Another poor implementation

w The issue here is a subtle race condition.

¢ The parent calls thr_join().

n The parent checks the value of done.

n It will see that it is 0 and try to go to sleep.

n Just before it calls wait to go to sleep, the parent is interrupted and the child runs.

¢ The child changes the state variable done to 1 and signals.

n But no thread is waiting and thus no thread is woken.

n When the parent runs again, it sleeps forever.

w Always hold the lock while signaling

1 void thr_exit() {
2 done = 1;
3 Pthread_cond_signal(&c);
4 }
5
6 void thr_join() {
7 if (done == 0)
8 Pthread_cond_wait(&c);
9 }

AOS@UC 11

The Producer / Consumer (Bound Buffer) Problem

p Producer

w Produce data items

w Wish to place data items in a buffer

p Consumer

w Grab data items out of the buffer consume them in some way

p Example: Multi-threaded web server

w A producer puts HTTP requests in to a work queue

w Consumer threads take requests out of this queue and process them

AOS@UC 12

Bounded buffer

p A bounded buffer is used when you pipe the output of one program

into another.

w Example: grep foo file.txt | wc –l

¢ The grep process is the producer.

¢ The wc process is the consumer.

¢ Between them is an in-kernel bounded buffer.

w Bounded buffer is Shared resource à Synchronized access is required.

AOS@UC 13

The Put and Get Routines (Version 1)

w Only put data into the buffer when count is zero.

¢ i.e., when the buffer is empty.

w Only get data from the buffer when count is one.

¢ i.e., when the buffer is full.

1 int buffer;
2 int count = 0; // initially, empty
3
4 void put(int value) {
5 assert(count == 0);
6 count = 1;
7 buffer = value;
8 }
9
10 int get() {
11 assert(count == 1);
12 count = 0;
13 return buffer;
14 }

AOS@UC 14

Producer/Consumer Threads (Version 1)

w Producer puts an integer into the shared buffer loops number of times.

w Consumer gets the data out of that shared buffer.

1 void *producer(void *arg) {
2 int i;
3 int loops = (int) arg;
4 for (i = 0; i < loops; i++) {
5 put(i);
6 }
7 }
8
9 void *consumer(void *arg) {
10 int i;
11 while (1) {
12 int tmp = get();
13 printf("%d\n", tmp);
14 }
15 }

AOS@UC 15

Producer/Consumer: Single CV and If Statement

p A single condition variable cond and associated lock mutex

1 cond_t cond;
2 mutex_t mutex;
3
4 void *producer(void *arg) {
5 int i,loops = (int) arg;
6 for (i = 0; i < loops; i++) {
7 Pthread_mutex_lock(&mutex); // p1
8 if (count == 1) // p2
9 Pthread_cond_wait(&cond, &mutex); // p3
10 put(i); // p4
11 Pthread_cond_signal(&cond); // p5
12 Pthread_mutex_unlock(&mutex); // p6
13 }
14 }
15
16 void *consumer(void *arg) {
17 int i,loops = (int) arg;
18 for (i = 0; i < loops; i++) {
19 Pthread_mutex_lock(&mutex); // c1

AOS@UC 16

Producer/Consumer: Single CV and If Statement

w p1-p3: A producer waits for the buffer to be empty.

w c1-c3: A consumer waits for the buffer to be full.

w With just a single producer and a single consumer, the code works.

20 if (count == 0) // c2
21 Pthread_cond_wait(&cond, &mutex); // c3
22 int tmp = get(); // c4
23 Pthread_cond_signal(&cond); // c5
24 Pthread_mutex_unlock(&mutex); // c6
25 printf("%d\n", tmp);
26 }
27 }

If we have more than one of producer and consumer?

AOS@UC 17

Thread Trace with 2 consumers: Broken Solution (Version 1)

𝑻𝒄𝟏 State 𝑻𝒄𝟐 State 𝑻𝒑 State Count Comment

c1 Running Ready Ready 0

c2 Running Ready Ready 0

c3 Sleep Ready Ready 0 Nothing to get

Sleep Ready p1 Running 0

Sleep Ready p2 Running 0

Sleep Ready p4 Running 1 Buffer now full

Ready Ready p5 Running 1 𝑇'(awoken

Ready Ready p6 Running 1

Ready Ready p1 Running 1

Ready Ready p2 Running 1

Ready Ready p3 Sleep 1 Buffer full; sleep

Ready c1 Running Sleep 1 𝑇') sneaks in …

Ready c2 Running Sleep 1

Ready c4 Running Sleep 0 … and grabs data

Ready c5 Running Ready 0 𝑇* awoken

Ready c6 Running Ready 0

c4 Running Ready Ready 0 Oh oh! No data

AOS@UC 18

Scheduler
state

Thread Trace: Broken Solution (Version 1)

p The problem arises for a simple reason:

w After the producer woke 𝑇'(, but before 𝑇'(ever ran, the state of the

bounded buffer changed by 𝑇').

w There is no guarantee that when the woken thread runs, the state will still

be as desired à Mesa semantics.

¢ Virtually every system ever built employs Mesa semantics.

w Hoare semantics provides a stronger guarantee that the woken thread will

run immediately upon being woken.

AOS@UC 19

Producer/Consumer: Single CV and While

p Consumer 𝑇'(wakes up and re-checks the state of the shared variable.

w If the buffer is empty, the consumer simply goes back to sleep.

1 cond_t cond;
2 mutex_t mutex;
3
4 void *producer(void *arg) {
5 int i,loops = (int) arg;
6 for (i = 0; i < loops; i++) {
7 Pthread_mutex_lock(&mutex); // p1
8 while (count == 1) // p2
9 Pthread_cond_wait(&cond, &mutex); // p3
10 put(i); // p4
11 Pthread_cond_signal(&cond); // p5
12 Pthread_mutex_unlock(&mutex); // p6
13 }
14 }
15

AOS@UC 20

In the previous code, similar problem will
arise with 2 producers!

Producer/Consumer: Single CV and While

w A simple rule to remember with condition variables is to always use while

loops.

w However, this code still has a bug (next page).

(Cont.)
16 void *consumer(void *arg) {
17 int i,loops = (int) arg;
18 for (i = 0; i < loops; i++) {
19 Pthread_mutex_lock(&mutex); // c1
20 while (count == 0) // c2
21 Pthread_cond_wait(&cond, &mutex); // c3
22 int tmp = get(); // c4
23 Pthread_cond_signal(&cond); // c5
24 Pthread_mutex_unlock(&mutex); // c6
25 printf("%d\n", tmp);
26 }
27 }

AOS@UC 21

Thread Trace: Still Broken Solution (Version 2)

𝑻𝒄𝟏 State 𝑻𝒄𝟐 State 𝑻𝒑 State Count Comment

c1 Running Ready Ready 0

c2 Running Ready Ready 0

c3 Sleep Ready Ready 0 Nothing to get

Sleep c1 Running Ready 0

Sleep c2 Running Ready 0

Sleep c3 Sleep Ready 0 Nothing to get

Sleep Sleep p1 Running 0

Sleep Sleep p2 Running 0

Sleep Sleep p4 Running 1 Buffer now full

Ready Sleep p5 Running 1 𝑇'(awoken

Ready Sleep p6 Running 1

Ready Sleep p1 Running 1

Ready Sleep p2 Running 1

Ready Sleep p3 Sleep 1 Must sleep (full)

c2 Running Sleep Sleep 1 Recheck condition

c4 Running Sleep Sleep 0 𝑇'(grabs data

c5 Running Ready Sleep 0 Oops! Woke 𝑻𝒄𝟐

AOS@UC 22

. . .

w A consumer should not wake other consumers, only producers, and vice-

versa.

w Can’t use the same cond var for two things (signaling the buffer is empty

and the buffer is fill)

Thread Trace: Broken Solution (Version 2) (Cont.)

𝑻𝒄𝟏 State 𝑻𝒄𝟐 State 𝑻𝒑 State Count Comment

… … … … … … … (cont.)

c6 Running Ready Sleep 0

c1 Running Ready Sleep 0

c2 Running Ready Sleep 0

c3 Sleep Ready Sleep 0 Nothing to get

Sleep c2 Running Sleep 0

Sleep c3 Sleep Sleep 0 Everyone asleep …

AOS@UC 23

The single Buffer Producer/Consumer Solution

p Use two condition variables and while

w Producer threads wait on the condition empty, and signals fill.

w Consumer threads wait on fill and signal empty.

1 cond_t empty, fill;
2 mutex_t mutex;
3
4 void *producer(void *arg) {
5 int i,loops = (int) arg;
6 for (i = 0; i < loops; i++) {
7 Pthread_mutex_lock(&mutex);
8 while (count == 1)
9 Pthread_cond_wait(&empty, &mutex);
10 put(i);
11 Pthread_cond_signal(&fill);
12 Pthread_mutex_unlock(&mutex);
13 }
14 }
15

AOS@UC 24

The single Buffer Producer/Consumer Solution

(Cont.)
16 void *consumer(void *arg) {
17 int i,loops = (int) arg;
18 for (i = 0; i < loops; i++) {
19 Pthread_mutex_lock(&mutex);
20 while (count == 0)
21 Pthread_cond_wait(&fill, &mutex);
22 int tmp = get();
23 Pthread_cond_signal(&empty);
24 Pthread_mutex_unlock(&mutex);
25 printf("%d\n", tmp);
26 }
27 }

AOS@UC 25

The Final Producer/Consumer Solution

p More concurrency and efficiency à Add more buffer slots.

w Allow concurrent production or consuming to take place.

w Reduce context switches.

1 int buffer[MAX];
2 int fill = 0;
3 int use = 0;
4 int count = 0;
5
6 void put(int value) {
7 buffer[fill] = value;
8 fill = (fill + 1) % MAX;
9 count++;
10 }
11
12 int get() {
13 int tmp = buffer[use];
14 use = (use + 1) % MAX;
15 count--;
16 return tmp;
17 }

The Final Put and Get Routines

AOS@UC 26

The Final Producer/Consumer Solution (Cont.)

1 cond_t empty, fill;
2 mutex_t mutex;
3
4 void *producer(void *arg) {
5 int i,loops = (int) arg;
6 for (i = 0; i < loops; i++) {
7 Pthread_mutex_lock(&mutex); // p1
8 while (count == MAX) // p2
9 Pthread_cond_wait(&empty, &mutex); // p3
10 put(i); // p4
11 Pthread_cond_signal(&fill); // p5
12 Pthread_mutex_unlock(&mutex); // p6
13 }
14 }
15
16 void *consumer(void *arg) {
17 int i,loops = (int) arg;
18 for (i = 0; i < loops; i++) {
19 Pthread_mutex_lock(&mutex); // c1
20 while (count == 0) // c2
21 Pthread_cond_wait(&fill, &mutex); // c3
22 int tmp = get(); // c4

AOS@UC 27

The Final Producer/Consumer Solution (Cont.)

w p2: A producer only sleeps if all buffers are currently filled.

w c2: A consumer only sleeps if all buffers are currently empty.

(Cont.)
23 Pthread_cond_signal(&empty); // c5
24 Pthread_mutex_unlock(&mutex); // c6
25 printf("%d\n", tmp);
26 }
27 }

The Final Working Solution (Cont.)

AOS@UC 28

Covering Conditions

1 // how many bytes of the heap are free?
2 int bytesLeft = MAX_HEAP_SIZE;
3
4 // need lock and condition too
5 cond_t c;
6 mutex_t m;
7
8 void *
9 allocate(int size) {
10 Pthread_mutex_lock(&m);
11 while (bytesLeft < size)
12 Pthread_cond_wait(&c, &m);
13 void *ptr = ...; // get mem from heap
14 bytesLeft -= size;
15 Pthread_mutex_unlock(&m);
16 return ptr;
17 }
18
19 void free(void *ptr, int size) {
20 Pthread_mutex_lock(&m);
21 bytesLeft += size;
22 Pthread_cond_signal(&c); // whom to signal??
23 Pthread_mutex_unlock(&m);
24 }

AOS@UC 29

Covering Conditions (Cont.)

p Assume there are zero bytes free

w Thread 𝑇+ calls allocate(100).

w Thread 𝑇, calls allocate(10).

w Both 𝑇+ and 𝑇, wait on the condition and go to sleep.

w Thread 𝑇' calls free(50).

Which waiting thread should be woken up?

AOS@UC 30

Covering Conditions (Cont.)

p Solution (Suggested by Lampson and Redell)

w Replace pthread_cond_signal() with pthread_cond_broadcast()

w pthread_cond_broadcast()

¢ Wake up all waiting threads.

¢ Cost: too many threads might be woken.

¢ Threads that shouldn’t be awake will simply wake up, re-check the condition,

and then go back to sleep.

p Some of the producer/consumer buggy code is also coincidentally

“fixed” by broadcasts

w But isn’t not the solution: is better to find the bug!

AOS@UC 31

p Disclaimer: Disclaimer: This lecture slide set is used in AOS course at University of Cantabria

by V.Puente. Was initially developed for Operating System course in Computer Science Dept.

at Hanyang University. This lecture slide set is for OSTEP book written by Remzi and Andrea

Arpaci-Dusseau (at University of Wisconsin)

AOS@UC 32

