
29. Lock-based Concurrent Data Structures
Operating System: Three Easy Pieces

1 AOS@UC Lock-based Concurrent Data Structures

Lock-based Concurrent Data structure

p Adding locks to a data structure makes the structure thread safe.

w How locks are added determine both the correctness and performance of

the data structure.

p Just a succinct introduction to the multithreaded way-of-“thinking”

w Thousands of research papers about it

AOS@UC 2 Lock-based Concurrent Data Structures

Example: Concurrent Counters without Locks

p Not thread safe

1 typedef struct __counter_t {
2 int value;
3 } counter_t;
4
5 void init(counter_t *c) {
6 c->value = 0;
7 }
8
9 void increment(counter_t *c) {
10 c->value++;
11 }
12
13 void decrement(counter_t *c) {
14 c->value--;
15 }
16
17 int get(counter_t *c) {
18 return c->value;
19 }

AOS@UC 3 Lock-based Concurrent Data Structures

Example: Concurrent Counters with Locks

p Add a single lock: thread safe but scalable?

w The lock is acquired when calling a routine that manipulates the data

structure.

1 typedef struct __counter_t {
2 int value;
3 pthread_lock_t lock;
4 } counter_t;
5
6 void init(counter_t *c) {
7 c->value = 0;
8 Pthread_mutex_init(&c->lock, NULL);
9 }
10
11 void increment(counter_t *c) {
12 Pthread_mutex_lock(&c->lock);
13 c->value++;
14 Pthread_mutex_unlock(&c->lock);
15 }
16

AOS@UC 4 Lock-based Concurrent Data Structures

Example: Concurrent Counters with Locks (Cont.)

(Cont.)
17 void decrement(counter_t *c) {
18 Pthread_mutex_lock(&c->lock);
19 c->value--;
20 Pthread_mutex_unlock(&c->lock);
21 }
22
23 int get(counter_t *c) {
24 Pthread_mutex_lock(&c->lock);
25 int rc = c->value;
26 Pthread_mutex_unlock(&c->lock);
27 return rc;
28 }

AOS@UC 5 Lock-based Concurrent Data Structures

The performance costs of the simple approach

p Each thread updates a single shared counter.

w Each thread updates the counter one million times.

w iMac with four Intel 2.7GHz i5 CPUs.

Performance of
Traditional

Synchronized counter might scale poorly.

AOS@UC 6 Lock-based Concurrent Data Structures

Perfect Scaling

p Even though more work is done, it is done in parallel.

p The time taken to complete the task is not increased.

AOS@UC 7 Lock-based Concurrent Data Structures

Sloppy counter

p The sloppy counter works by representing …

w A single logical counter via numerous local physical counters, one per

CPU core

w A single global counter

w There are locks:

¢ One fore each local counter and one for the global counter

p Example: on a machine with four CPUs

w Four local counters

w One global counter

AOS@UC 8 Lock-based Concurrent Data Structures

The basic idea of sloppy counting

p When a thread running on a core wishes to increment the counter.

w It increment its local counter.

w Each CPU has its own local counter:

¢ Threads across CPUs can update local counters without contention.

¢ Thus, counter updates are scalable.

w The local values are periodically transferred to the global counter.

¢ Acquire the global lock

¢ Increment it by the local counter’s value

¢ The local counter is then reset to zero.

AOS@UC 9 Lock-based Concurrent Data Structures

The basic idea of sloppy counting (Cont.)

p How often the local-to-global transfer occurs is determined by a

threshold, S (sloppiness).

w The smaller S:

¢ The more the counter behaves like the non-scalable counter.

w The bigger S:

¢ The more scalable the counter.

¢ The further off the global value might be from the actual count.

AOS@UC 10 Lock-based Concurrent Data Structures

Sloppy counter example

p Tracing the Sloppy Counters

w The threshold S is set to 5.

w There are threads on each of four CPUs

w Each thread updates their local counters 𝐿!… 𝐿".

Time 𝐋𝟏 𝐋𝟐 𝐋𝟑 𝐋𝟒 G

0 0 0 0 0 0

1 0 0 1 1 0

2 1 0 2 1 0

3 2 0 3 1 0

4 3 0 3 2 0

5 4 1 3 3 0

6 5 à 0 1 3 4 5 (from 𝐿%)
7 0 2 4 5 à 0 10 (from 𝐿&)

AOS@UC 11 Lock-based Concurrent Data Structures

Importance of the threshold value S

p Each four threads increments a counter 1 million times on four CPUs.

w Low S à Performance is poor, The global count is always quire accurate.

w High S à Performance is excellent, The global count lags.

Scaling Sloppy Counters

AOS@UC 12 Lock-based Concurrent Data Structures

The performance costs of the simple approach

p Each thread updates a single shared counter.

w Each thread updates the counter one million times.

w iMac with four Intel 2.7GHz i5 CPUs.

Performance of
Traditional vs. Sloppy Counters
(Threshold of Sloppy, S, is set to 1024)

AOS@UC 13 Lock-based Concurrent Data Structures

More concurrency isn’t necessary faster

Sloppy Counter Implementation

1 typedef struct __counter_t {
2 int global; // global count
3 pthread_mutex_t glock; // global lock
4 int local[NUMCPUS]; // local count (per cpu)
5 pthread_mutex_t llock[NUMCPUS]; // ... and locks
6 int threshold; // update frequency
7 } counter_t;
8
9 // init: record threshold, init locks, init values
10 // of all local counts and global count
11 void init(counter_t *c, int threshold) {
12 c->thres hold = threshold;
13
14 c->global = 0;
15 Pthread_mutex_init(&c->glock, NULL);
16
17 int i;
18 for (i = 0; i < NUMCPUS; i++) {
19 c->local[i] = 0;
20 Pthread_mutex_init(&c->llock[i], NULL);
21 }
22 }
23

AOS@UC 14 Lock-based Concurrent Data Structures

Sloppy Counter Implementation (Cont.)

(Cont.)
24 // update: usually, just grab local lock and update local amount
25 // once local count has risen by ’threshold’, grab global
26 // lock and transfer local values to it
27 void update(counter_t *c, int threadID, int amt) {
28 Pthread_mutex_lock(&c->llock[threadID]);
29 c->local[threadID] += amt; // assumes amt > 0
30 if (c->local[threadID] >= c->threshold) { // transfer to global
31 Pthread_mutex_lock(&c->glock);
32 c->global += c->local[threadID];
33 Pthread_mutex_unlock(&c->glock);
34 c->local[threadID] = 0;
35 }
36 Pthread_mutex_unlock(&c->llock[threadID]);
37 }
38
39 // get: just return global amount (which may not be perfect)
40 int get(counter_t *c) { //use llock[threadID] to add part sums?
41 Pthread_mutex_lock(&c->glock);
42 int val = c->global;
43 Pthread_mutex_unlock(&c->glock);
44 return val; // only approximate!
45 }

AOS@UC 15 Lock-based Concurrent Data Structures

Concurrent Linked List: 1st try (and how easy is introducing bugs)

1 // basic node structure
2 typedef struct __node_t {
3 int key;
4 struct __node_t *next;
5 } node_t;
6
7 // basic list structure (one used per list)
8 typedef struct __list_t {
9 node_t *head;
10 Pthread_mutex_t lock;
11 } list_t;
12
13 void List_Init(list_t *L) {
14 L->head = NULL;
15 Pthread_mutex_init(&L->lock, NULL);
16 }
17
(Cont.)

AOS@UC 16 Lock-based Concurrent Data Structures

Concurrent Linked Lists

(Cont.)
18 int List_Insert(list_t *L, int key) {
19 Pthread_mutex_lock(&L->lock);
20 node_t *new = malloc(sizeof(node_t));
21 if (new == NULL) {
22 perror(”Failed malloc\n");
23 return -1; // fail
24 }
26 new->key = key;
27 new->next = L->head;
28 L->head = new;
29 Pthread_mutex_unlock(&L->lock);
30 return 0; // success
31 }
(Cont.)

AOS@UC 17 Lock-based Concurrent Data Structures

Concurrent Linked Lists (Cont.)

(Cont.)
32
32 int List_Lookup(list_t *L, int key) {
33 Pthread_mutex_lock(&L->lock);
34 node_t *curr = L->head;
35 while (curr) {
36 if (curr->key == key) {
38 return 0; // success
39 }
40 curr = curr->next;
41 }
42 Pthread_mutex_unlock(&L->lock);
43 return -1; // failure
44 }

AOS@UC 18 Lock-based Concurrent Data Structures

Concurrent Linked Lists (Cont.)

p The code acquires a lock in the insert routine upon entry.

p The code releases the lock upon exit.

w If malloc() happens to fail, the code must also release the lock before

failing the insert.

w This kind of exceptional control flow has been shown to be quite error

prone.

w Solution: The lock and release only surround the actual critical section in

the insert code. Don’t do “exceptional” control flows (single point exit).

AOS@UC 19 Lock-based Concurrent Data Structures

Concurrent Linked List: Refactored Insert

1 void List_Init(list_t *L) {
2 L->head = NULL;
3 pthread_mutex_init(&L->lock, NULL);
4 }
5
6 void List_Insert(list_t *L, int key) {
7 // synchronization not needed
8 node_t *new = malloc(sizeof(node_t));
9 if (new == NULL) {
10 perror("malloc");
11 return;
12 }
13 new->key = key;
14
15 // just lock critical section
16 Pthread_mutex_lock(&L->lock);
17 new->next = L->head;
18 L->head = new;
19 Pthread_mutex_unlock(&L->lock);
20 }
21

AOS@UC 20 Lock-based Concurrent Data Structures

Concurrent Linked List: Refactored(Cont.)

(Cont.)
22 int List_Lookup(list_t *L, int key) {
23 int rv = -1;
24 Pthread_mutex_lock(&L->lock);
25 node_t *curr = L->head;
26 while (curr) {
27 if (curr->key == key) {
28 rv = 0;
29 break;
30 }
31 curr = curr->next;
32 }
33 Pthread_mutex_unlock(&L->lock);
34 return rv; // now both success and failure
35 }

AOS@UC 21 Lock-based Concurrent Data Structures

Scaling Linked List

p Hand-over-hand locking (lock coupling)

w Add a lock per node of the list instead of having a single lock for the

entire list.

w When traversing the list,

¢ First grabs the next node’s lock.

¢ And then releases the current node’s lock.

w Enable a high degree of concurrency in list operations.

¢ However, in practice, the overheads of acquiring and releasing locks for each

node of a list traversal can be prohibitive.

¢ Perhaps a hybrid (where you grab a new lock every so many nodes) approach?

AOS@UC 22 Lock-based Concurrent Data Structures

Concurrent Queues

p Queues uses enqueue/dequeue operations only: allows concurrent

access

p There are two locks.

w One for the head of the queue.

w One for the tail.

w The goal of these two locks is to enable concurrency of enqueue(tail) and

dequeue(head) operations. FIFO ordering.

p Add a dummy node

w Allocated in the queue initialization code

w Enable the separation of head and tail operations

AOS@UC 23 Lock-based Concurrent Data Structures

Concurrent Queues (Cont.)

1 typedef struct __node_t {
2 int value;
3 struct __node_t *next;
4 } node_t;
5
6 typedef struct __queue_t {
7 node_t *head;
8 node_t *tail;
9 Pthread_mutex_t headLock;
10 Pthread_mutex_t tailLock;
11 } queue_t;
12
13 void Queue_Init(queue_t *q) {
14 node_t *tmp = malloc(sizeof(node_t));
15 tmp->next = NULL;
16 q->head = q->tail = tmp;
17 Pthread_mutex_init(&q->headLock, NULL);
18 Pthread_mutex_init(&q->tailLock, NULL);
19 }
20
(Cont.)

AOS@UC 24 Lock-based Concurrent Data Structures

Concurrent Queues (Cont.)

(Cont.)
21 void Queue_Enqueue(queue_t *q, int value) {
22 node_t *tmp = malloc(sizeof(node_t));
23 assert(tmp != NULL && “Malloc failed”);
24
25 tmp->value = value;
26 tmp->next = NULL;
27
28 Pthread_mutex_lock(&q->tailLock);
29 q->tail->next = tmp;
30 q->tail = tmp;
31 Pthread_mutex_unlock(&q->tailLock);
32 }
(Cont.)

AOS@UC 25 Lock-based Concurrent Data Structures

Concurrent Queues (Cont.)

(Cont.)
33 int Queue_Dequeue(queue_t *q, int *value) {
34 int ret = 0;
34 Pthread_mutex_lock(&q->headLock);
35 node_t *tmp = q->head;
36 node_t *newHead = tmp->next;
37 if (newHead == NULL) {
38 ret = -1;
39 break; // queue was empty
40 }
41 *value = newHead->value;
42 q->head = newHead;
43 Pthread_mutex_unlock(&q->headLock);
44 free(tmp);
45 return ret;
46 }

AOS@UC 26 Lock-based Concurrent Data Structures

Concurrent Hash Table

p Focus on a simple hash table

w The hash table does not resize, simplest hash, slow searches

w Built using the concurrent lists

w It uses a lock per hash bucket each of which is represented by a list.

AOS@UC 27 Lock-based Concurrent Data Structures

Concurrent Hash Table

1 #define BUCKETS (101)
2
3 typedef struct __hash_t {
4 list_t lists[BUCKETS];
5 } hash_t;
6
7 void Hash_Init(hash_t *H) {
8 int i;
9 for (i = 0; i < BUCKETS; i++) {
10 List_Init(&H->lists[i]);
11 }
12 }
13
14 int Hash_Insert(hash_t *H, int key) {
15 int bucket = key % BUCKETS;
16 return List_Insert(&H->lists[bucket], key);
17 }
18
19 int Hash_Lookup(hash_t *H, int key) {
20 int bucket = key % BUCKETS;
21 return List_Lookup(&H->lists[bucket], key);
22 }

AOS@UC 28 Lock-based Concurrent Data Structures

Performance of Concurrent Hash Table

p From 10,000 to 50,000 concurrent updates from each of four threads.

w iMac with four Intel 2.7GHz i5 CPUs (and 4 threads)

The simple concurrent hash table scales
magnificently.

AOS@UC 29 Lock-based Concurrent Data Structures

Summary

p Just a scratch in the surface of concurrent data-structures

p Others can be built progressively on top of simpler ideas (as Hash)

p Non-block data structures (or lock-free concurrent programing)

AOS@UC 30 Lock-based Concurrent Data Structures

p This lecture slide set has been adapted for AOS course at University of Cantabria by V.Puente.

Was initially developed for Operating System course in Computer Science Dept. at Hanyang

University. This lecture slide set is for OSTEP book written by Remzi and Andrea Arpaci-

Dusseau (at University of Wisconsin)

AOS@UC 31 Lock-based Concurrent Data Structures

