
27. Interlude: Thread API
Operating System: Three Easy Pieces

1AOS@UC

Thread Creation

p How to create and control threads?

w thread: Used to interact with this thread (OUT).

w attr: Used to specify any attributes this thread might have.

¢ Stack size, Scheduling priority, … (IN)

w start_routine: the function this thread start running in (IN)

w arg: the argument to be passed to the function (start routine) (IN/OUT)

¢ a void pointer allows us to pass in any type of argument.

w Returns 0 if went good (a error code otherwise: EAGAIN, EINVAL, EPERM)

#include <pthread.h>

int
pthread_create(pthread_t* thread,

const pthread_attr_t* attr,
void* (*start_routine)(void*),
void* arg);

AOS@UC 2

Thread Creation (Cont.)

p If start_routine instead required another type argument, the

declaration would look like this (example):

w An integer argument:

w Input is anything (usually a pointer to struct for multiple arguments or

even internal returns), return an integer:

int
pthread_create(…, // first two args are the same

void* (*start_routine)(int),
int arg);

int
pthread_create(…, // first two args are the same

int (*start_routine)(void*),
void* arg);

AOS@UC 3

Example: Creating a Thread

#include <pthread.h>

typedef struct __myarg_t {
int a;
int b;

} myarg_t;

void *mythread(void *arg) {
myarg_t *m = (myarg_t *) arg;
printf(“%d %d\n”, m->a, m->b);
return NULL;

}

int main(int argc, char *argv[]) {
pthread_t p;
int rc;

myarg_t args;
args.a = 10;
args.b = 20;
rc = pthread_create(&p, NULL, mythread, &args);
…

}

AOS@UC 4

Wait for a thread to complete

w thread: Specify which thread to wait for

w value_ptr: A pointer we want to put the return value of the start routine

(ouch!)

¢ Because pthread_join() routine changes the value, you need to pass in a

pointer to that value.

w Returns 0 if good, or EINVAL, ESRCH if err

int pthread_join(pthread_t thread, (void *)*value_ptr);

AOS@UC 5

Example: Waiting for Thread Completion

1 #include <stdio.h>
2 #include <pthread.h>
3 #include <assert.h>
4 #include <stdlib.h>
5
6 typedef struct __myarg_t {
7 int a;
8 int b;
9 } myarg_t;
10
11 typedef struct __myret_t {
12 int x;
13 int y;
14 } myret_t;
15
16 void *mythread(void *arg) {
17 myarg_t *m = (myarg_t *) arg;
18 printf(“%d %d\n”, m->a, m->b);
19 myret_t *r = malloc(sizeof(myret_t));
20 r->x = 1;
21 r->y = 2;
22 return (void *) r;
23 }
24

AOS@UC 6

Example: Waiting for Thread Completion (Cont.)

25 int main(int argc, char *argv[]) {
26 int rc;
27 pthread_t p;
28 myret_t *m;
29
30 myarg_t args;
31 args.a = 10;
32 args.b = 20;
33 pthread_create(&p, NULL, mythread, &args);
34 pthread_join(p, (void **) &m); // this thread has been

// waiting inside of the
// pthread_join() routine.

35 printf(“returned %d %d\n”, m->x, m->y);
36 return 0;
37 }

AOS@UC 7

Example: Dangerous code

p Be careful with how values are returned from a thread.

w When the variable r returns, it is automatically de-allocated.

w Don’t malloc here! (memory leak prone) [bad example before]

¢ Better to be consistent a allocate and free in parent

1 void *mythread(void *arg) {
2 myarg_t *m = (myarg_t *) arg;
3 printf(“%d %d\n”, m->a, m->b);
4 myret_t r; // ALLOCATED ON STACK: BAD!
5 r.x = 1;
6 r.y = 2;
7 return (void *) &r;
8 }

AOS@UC 8

Example: Simpler Argument Passing to a Thread

p Just passing in a single value

1 void *mythread(void *arg) {
2 int m = (int) arg;
3 printf(“%d\n”, m);
4 return (void *) (arg + 1);
5 }
6
7 int main(int argc, char *argv[]) {
8 pthread_t p;
9 int rc, m;
10 pthread_create(&p, NULL, mythread, (void *) 100);
11 pthread_join(p, (void **) &m);
12 printf(“returned %d\n”, m);
13 return 0;
14 }

AOS@UC 9

From a practical perspective
using threads this way is pointless!

(just do a procedure call)

Locks

p Provide mutual exclusion to a critical section

w Interface

w Usage (w/o lock initialization and error check)

¢ No other thread holds the lock à the thread will acquire the lock and enter

the critical section.

¢ If another thread hold the lock à the thread will not return from the call until

it has acquired the lock.

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

pthread_mutex_t lock;
pthread_mutex_lock(&lock);
x = x + 1; // or whatever your critical section is
pthread_mutex_unlock(&lock);

AOS@UC 10

Locks (Cont.)

p All locks must be properly initialized (i.e. unlocked value).

w One way: using PTHREAD_MUTEX_INITIALIZER

w The dynamic way: using pthread_mutex_init()

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

int rc = pthread_mutex_init(&lock, NULL);
assert(rc == 0 && “Error in mutex init”);

AOS@UC 11

Locks (Cont.)

p Check errors code when calling lock and unlock

w An example wrapper

p These two calls are used in lock acquisition

w trylock: return failure if the lock is already held

w timelock: return after a timeout

// Use this to keep your code clean but check for failures
// Only use if exiting program is OK upon failure
void Pthread_mutex_lock(pthread_mutex_t *mutex) {

int rc = pthread_mutex_lock(mutex);
assert(rc == 0 && “Error in acquire”);

}

int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_timelock(pthread_mutex_t *mutex,

struct timespec *abs_timeout);

AOS@UC 12

Not a bad idea to define a wrapper: much cleaner code

AOS@UC 13

Locks (Cont.)

p These two calls are also used in lock acquisition

w trylock: return failure if the lock is already held

w timelock: return after a timeout or after acquiring the lock

int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_timelock(pthread_mutex_t *mutex,

struct timespec *abs_timeout);

AOS@UC 14

Condition Variables

p Condition variables are useful when some kind of signaling must take

place between threads.

w pthread_cond_wait:

¢ Put the calling thread to sleep.

¢ Wait for some other thread to signal it.

w pthread_cond_signal:

¢ Unblock at least one of the threads that are blocked on the condition variable

int pthread_cond_wait(pthread_cond_t *cond,
pthread_mutex_t *mutex);

int pthread_cond_signal(pthread_cond_t *cond);

AOS@UC 15

Condition Variables (Cont.)

p A thread calling wait routine:

w The wait call releases the lock when putting said caller to sleep.

w Before returning after being woken, the wait call re-acquire the lock.

p A thread calling signal routine:

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t init = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&init, &lock);
pthread_mutex_unlock(&lock);

pthread_mutex_lock(&lock);
initialized = 1;
pthread_cond_signal(&init);
pthread_mutex_unlock(&lock);

AOS@UC 16

Condition Variables (Cont.)

p The waiting thread re-checks the condition in a while loop, instead of

a simple if statement.

w Without rechecking, the waiting thread will continue thinking that the

condition has changed even though it has not.

w For example if multiple threads are waiting and only one should grab the

data (producer-consumer)

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t init = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&init, &lock);
pthread_mutex_unlock(&lock);

AOS@UC 17

Condition Variables (Cont.)

p Don’t ever to this.

w A thread calling wait routine:

w A thread calling signal routine:

w It performs poorly in many cases. à just wastes CPU cycles.

w It is error prone.

while(initialized == 0)
; // spin

initialized = 1;

AOS@UC 18

Compiling and Running

p To compile them, you must include the header pthread.h

w Explicitly link with the pthreads library, by adding the –pthread flag.

w For more information,

prompt> gcc –o main main.c –Wall -pthread

man –k pthread

AOS@UC 19

Thread API Use Guidelines

p Keep it simple

w Tricky thread interactions lead to (hard to find) bugs

p Minimize thread interaction

w Limits scalability

p Initialize mutex and cond vars

p Check always return codes

p Be careful how to pass arguments and get values:

w A good practice is to allocate/free memory in the calling thread

w Be careful with heap

p Each thread has his own stack

p Always use cond. variables to signal between threads

p Read the man pages

AOS@UC 20

p Disclaimer: This lecture slide set is used in AOS course at University of Cantabria by

V.Puente. Was initially developed for Operating System course in Computer Science

Dept. at Hanyang University. This lecture slide set is for OSTEP book written by Remzi

and Andrea Arpaci-Dusseau (at University of Wisconsin)

AOS@UC 21

