
26. Concurrency: An Introduction
Operating System: Three Easy Pieces

1AOS@UC Concurrency: An Introduction

Thread

p A new abstraction for a single running process

p Multi-threaded program

w A multi-threaded program has more than one point of execution.

w Multiple PCs (Program Counter)

w They share the same address space.

AOS@UC 2Concurrency: An Introduction

Context switch between threads

p Each thread has its own program counter and set of registers.

w One or more thread control blocks(TCBs) are needed to store the state

of each thread.

w All of then within a common PCB

p When switching from running one (T1) to running the other (T2),

w The register state of T1 be saved.

w The register state of T2 restored.

w The address space remains the same.

AOS@UC 3Concurrency: An Introduction

The stack of the relevant thread

p There will be one stack per thread.

Stack (1)
16KB

15KB
(free)

Stack (2)

(free)

Heap

Program Code
0KB

1KB

2KB

Stack (1)
16KB

15KB

(free)

Heap

Program Code
0KB

1KB

2KB

The code segment:
where instructions live

The heap segment
contains malloc’d data
dynamic data structures
(it grows downward)

(it grows upward)
The stack segment:
contains local variables
arguments to routines,
return values, etc.

A Single-Threaded
Address Space

Two threaded
Address Space

AOS@UC 4

Thread-local
storage

Concurrency: An Introduction

Why threads?

p Performance

w Parallelism is the only way to use translate multiple cores into performance

w Parallelization: from single-threaded programs to multi-threaded

p Convenience

w Way to overlap I/O with useful work: approach of server-base applications

such as web-servers, DBMS, etc..

p Why threads and not processes?

w In threads is much easier to share data

w Less pressure over the memory

w Processes when the task are separated with little (to none) sharing

AOS@UC 5Concurrency: An Introduction

Example

4 CONCURRENCY: AN INTRODUCTION

1 #include <stdio.h>
2 #include <assert.h>
3 #include <pthread.h>
4

5 void *mythread(void *arg) {
6 printf("%s\n", (char *) arg);
7 return NULL;
8 }
9

10 int
11 main(int argc, char *argv[]) {
12 pthread_t p1, p2;
13 int rc;
14 printf("main: begin\n");
15 rc = pthread_create(&p1, NULL, mythread, "A"); assert(rc == 0);
16 rc = pthread_create(&p2, NULL, mythread, "B"); assert(rc == 0);
17 // join waits for the threads to finish
18 rc = pthread_join(p1, NULL); assert(rc == 0);
19 rc = pthread_join(p2, NULL); assert(rc == 0);
20 printf("main: end\n");
21 return 0;
22 }

Figure 26.2: Simple Thread Creation Code (t0.c)

Let us examine the possible execution ordering of this little program.
In the execution diagram (Figure 26.3, page 5), time increases in the down-
wards direction, and each column shows when a different thread (the
main one, or Thread 1, or Thread 2) is running.

Note, however, that this ordering is not the only possible ordering. In
fact, given a sequence of instructions, there are quite a few, depending on
which thread the scheduler decides to run at a given point. For example,
once a thread is created, it may run immediately, which would lead to the
execution shown in Figure 26.4 (page 5).

We also could even see “B” printed before “A”, if, say, the scheduler
decided to run Thread 2 first even though Thread 1 was created earlier;
there is no reason to assume that a thread that is created first will run first.
Figure 26.5 (page 5) shows this final execution ordering, with Thread 2
getting to strut its stuff before Thread 1.

As you might be able to see, one way to think about thread creation
is that it is a bit like making a function call; however, instead of first ex-
ecuting the function and then returning to the caller, the system instead
creates a new thread of execution for the routine that is being called, and
it runs independently of the caller, perhaps before returning from the cre-
ate, but perhaps much later. What runs next is determined by the OS
scheduler, and although the scheduler likely implements some sensible
algorithm, it is hard to know what will run at any given moment in time.

As you also might be able to tell from this example, threads make life
complicated: it is already hard to tell what will run when! Computers are
hard enough to understand without concurrency. Unfortunately, with
concurrency, it simply gets worse. Much worse.

OPERATING

SYSTEMS

[VERSION 0.91] WWW.OSTEP.ORG

AOS@UC 6Concurrency: An Introduction

Possible outcomes

AOS@UC 7Concurrency: An Introduction

Uh Oh 6 CONCURRENCY: AN INTRODUCTION

1 #include <stdio.h>
2 #include <pthread.h>
3 #include "mythreads.h"
4

5 static volatile int counter = 0;
6

7 //
8 // mythread()
9 //

10 // Simply adds 1 to counter repeatedly, in a loop
11 // No, this is not how you would add 10,000,000 to
12 // a counter, but it shows the problem nicely.
13 //
14 void *
15 mythread(void *arg)
16 {
17 printf("%s: begin\n", (char *) arg);
18 int i;
19 for (i = 0; i < 1e7; i++) {
20 counter = counter + 1;
21 }
22 printf("%s: done\n", (char *) arg);
23 return NULL;
24 }
25

26 //
27 // main()
28 //
29 // Just launches two threads (pthread_create)
30 // and then waits for them (pthread_join)
31 //
32 int
33 main(int argc, char *argv[])
34 {
35 pthread_t p1, p2;
36 printf("main: begin (counter = %d)\n", counter);
37 Pthread_create(&p1, NULL, mythread, "A");
38 Pthread_create(&p2, NULL, mythread, "B");
39

40 // join waits for the threads to finish
41 Pthread_join(p1, NULL);
42 Pthread_join(p2, NULL);
43 printf("main: done with both (counter = %d)\n", counter);
44 return 0;
45 }

Figure 26.6: Sharing Data: Uh Oh (t1.c)

26.3 Why It Gets Worse: Shared Data

The simple thread example we showed above was useful in showing
how threads are created and how they can run in different orders depend-
ing on how the scheduler decides to run them. What it doesn’t show you,
though, is how threads interact when they access shared data.

OPERATING

SYSTEMS

[VERSION 0.91] WWW.OSTEP.ORG

AOS@UC 8Concurrency: An Introduction

Possible outcomes

CONCURRENCY: AN INTRODUCTION 7

Let us imagine a simple example where two threads wish to update a
global shared variable. The code we’ll study is in Figure 26.6 (page 6).

Here are a few notes about the code. First, as Stevens suggests [SR05],
we wrap the thread creation and join routines to simply exit on failure;
for a program as simple as this one, we want to at least notice an error
occurred (if it did), but not do anything very smart about it (e.g., just
exit). Thus, Pthread create() simply calls pthread create() and
makes sure the return code is 0; if it isn’t, Pthread create() just prints
a message and exits.

Second, instead of using two separate function bodies for the worker
threads, we just use a single piece of code, and pass the thread an argu-
ment (in this case, a string) so we can have each thread print a different
letter before its messages.

Finally, and most importantly, we can now look at what each worker is
trying to do: add a number to the shared variable counter, and do so 10
million times (1e7) in a loop. Thus, the desired final result is: 20,000,000.

We now compile and run the program, to see how it behaves. Some-
times, everything works how we might expect:

prompt> gcc -o main main.c -Wall -pthread
prompt> ./main
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both (counter = 20000000)

Unfortunately, when we run this code, even on a single processor, we
don’t necessarily get the desired result. Sometimes, we get:

prompt> ./main
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both (counter = 19345221)

Let’s try it one more time, just to see if we’ve gone crazy. After all,
aren’t computers supposed to produce deterministic results, as you have
been taught?! Perhaps your professors have been lying to you? (gasp)

prompt> ./main
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both (counter = 19221041)

Not only is each run wrong, but also yields a different result! A big
question remains: why does this happen?

c⃝ 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

AOS@UC 9

CONCURRENCY: AN INTRODUCTION 7

Let us imagine a simple example where two threads wish to update a
global shared variable. The code we’ll study is in Figure 26.6 (page 6).

Here are a few notes about the code. First, as Stevens suggests [SR05],
we wrap the thread creation and join routines to simply exit on failure;
for a program as simple as this one, we want to at least notice an error
occurred (if it did), but not do anything very smart about it (e.g., just
exit). Thus, Pthread create() simply calls pthread create() and
makes sure the return code is 0; if it isn’t, Pthread create() just prints
a message and exits.

Second, instead of using two separate function bodies for the worker
threads, we just use a single piece of code, and pass the thread an argu-
ment (in this case, a string) so we can have each thread print a different
letter before its messages.

Finally, and most importantly, we can now look at what each worker is
trying to do: add a number to the shared variable counter, and do so 10
million times (1e7) in a loop. Thus, the desired final result is: 20,000,000.

We now compile and run the program, to see how it behaves. Some-
times, everything works how we might expect:

prompt> gcc -o main main.c -Wall -pthread
prompt> ./main
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both (counter = 20000000)

Unfortunately, when we run this code, even on a single processor, we
don’t necessarily get the desired result. Sometimes, we get:

prompt> ./main
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both (counter = 19345221)

Let’s try it one more time, just to see if we’ve gone crazy. After all,
aren’t computers supposed to produce deterministic results, as you have
been taught?! Perhaps your professors have been lying to you? (gasp)

prompt> ./main
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both (counter = 19221041)

Not only is each run wrong, but also yields a different result! A big
question remains: why does this happen?

c⃝ 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

CONCURRENCY: AN INTRODUCTION 7

Let us imagine a simple example where two threads wish to update a
global shared variable. The code we’ll study is in Figure 26.6 (page 6).

Here are a few notes about the code. First, as Stevens suggests [SR05],
we wrap the thread creation and join routines to simply exit on failure;
for a program as simple as this one, we want to at least notice an error
occurred (if it did), but not do anything very smart about it (e.g., just
exit). Thus, Pthread create() simply calls pthread create() and
makes sure the return code is 0; if it isn’t, Pthread create() just prints
a message and exits.

Second, instead of using two separate function bodies for the worker
threads, we just use a single piece of code, and pass the thread an argu-
ment (in this case, a string) so we can have each thread print a different
letter before its messages.

Finally, and most importantly, we can now look at what each worker is
trying to do: add a number to the shared variable counter, and do so 10
million times (1e7) in a loop. Thus, the desired final result is: 20,000,000.

We now compile and run the program, to see how it behaves. Some-
times, everything works how we might expect:

prompt> gcc -o main main.c -Wall -pthread
prompt> ./main
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both (counter = 20000000)

Unfortunately, when we run this code, even on a single processor, we
don’t necessarily get the desired result. Sometimes, we get:

prompt> ./main
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both (counter = 19345221)

Let’s try it one more time, just to see if we’ve gone crazy. After all,
aren’t computers supposed to produce deterministic results, as you have
been taught?! Perhaps your professors have been lying to you? (gasp)

prompt> ./main
main: begin (counter = 0)
A: begin
B: begin
A: done
B: done
main: done with both (counter = 19221041)

Not only is each run wrong, but also yields a different result! A big
question remains: why does this happen?

c⃝ 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Concurrency: An Introduction

The heart of the problem: : Uncontrolled Scheduling

p Example with two threads

w counter = counter + 1 (default is 50)

w We expect the result is 52. However,

OS Thread1 Thread2 PC %eax counter

mov 0x8049a1c, %eax
add $0x1, %eax

100
105
108

0
50
51

50
50
50

interrupt
save T1’s state (TCB)
restore T2’s state (TCB)

mov 0x8049a1c, %eax
add $0x1, %eax
mov %eax, 0x8049a1c

100
105
108
113

0
50
51
51

50
50
50
51

interrupt
save T2’s state
restore T1’s state

mov %eax, 0x8049a1c
108
113

51
51

50
51

(after instruction)

AOS@UC 10Concurrency: An Introduction

The wish for atomicity

p Do the read and modification of the memory in a single step

w i.e. “all or nothing”!

p How ho handle complex data? (v.gr. a b-tree)

w Use some atomic hardware support (called synchronization primitives) to

construct OS support

p A piece of code that accesses a shared variable and must not be

concurrently executed by more than one thread (mixing R and W).

w Multiple threads executing critical section can result in a race condition.

w Need to support atomicity for critical sections (mutual exclusion)

AOS@UC 11Concurrency: An Introduction

Locks

p Ensure that any such critical section executes as if it were a single

atomic instruction (execute a series of instructions atomically).

1 lock_t mutex;
2 . . .
3 lock(&mutex);
4 balance = balance + 1;
5 unlock(&mutex);

Critical section

AOS@UC 12Concurrency: An Introduction

One more problem: Waiting for another/s

p Sometimes the thread interaction is wait for another thread

w V.gr. When a thread should wait to another that had issued a I/O

w Need to be slept until the other thread receives the I/O end

p Sometimes the action of multiple threads should be synchronous

w V.gr. Many threads are performing in parallel an iteration in a numerical

problem

w All threads should start the next iteration at once (barrier)

p This sleeping/waking cycle will be controlled by condition variables

AOS@UC 13Concurrency: An Introduction

p This lecture slide set is used in AOS course at University of Cantabria by V.Puente. Was initially

developed for Operating System course in Computer Science Dept. at Hanyang University. This

lecture slide set is for OSTEP book written by Remzi and Andrea Arpaci-Dusseau (at

University of Wisconsin)

AOS@UC 14Concurrency: An Introduction

