26. Concurrency: An Introduction

Operating System: Three Easy Pieces

AOS@UC Concurrency: An Introduction 1



o A new abstraction for a single running process

o Multi-threaded program
* A multi-threaded program has more than one point of execution.
¢+ Multiple PCs (Program Counter)

¢+ They share the same address space.

AOS@UC Concurrency: An Introduction 2



Context switch between threads

o Each thread has its own program counter and set of registers.

¢+ One or more thread control blocks(TCBs) are needed to store the state

of each thread.

¢ All of then within a common PCB

o When switching from running one (T1) to running the other (T2),
* The register state of T1 be saved.

+ The register state of T2 restored.

¢+ The address space remains the same.

AOS@UC Concurrency: An Introduction 3



The stack of the relevant thread

o There will be one stack per thread.

OKB The code segment: OKB
Program Code where instructions live Program Code
1KB The h . 1KB
e heap segmen
Heap contains malloc'd data 5 Heap
2KB dynamic data structures KB
(it grows downward)
(free)
(free)
Stack (2)
(it grows upward)
The stack segment: (free)
15KB contains local variables 15KB
Stack (1) arguments to routines, Stack (1)
16KB return values, etc. 16KB
A Single-Threaded Two threaded

Address Space Address Space

Thread—-local
storage

AOS@UC Concurrency: An Introduction 4



Why threads?

o Performance
+ Parallelism is the only way to use translate multiple cores into performance

+ Parallelization: from single-threaded programs to multi-threaded

o Convenience

+ Way to overlap I/O with useful work: approach of server-base applications

such as web-servers, DBMS, etc..

o Why threads and not processes?

¢ |n threads is much easier to share data
* Less pressure over the memory

* Processes when the task are separated with little (to none) sharing

AOS@UC Concurrency: An Introduction 5



Example

#include <stdio.h>
#include <assert.h>
#include <pthread.h>

void xmythread (void =xarg) {
printf ("$s\n", (char *) argqg);
return NULL;

O 0 NI O U Bk W N -

int
main (int argc, char *argv[]) {
pthread_t pl, p2;
int rc;
printf ("main: begin\n");
rc = pthread_create(&pl, NULL, mythread, "A"); assert(rc == 0);
rc = pthread_create(&p2, NULL, mythread, "B"); assert (rc == 0);
// Jjoin waits for the threads to finish
rc = pthread_join(pl, NULL); assert(rc == 0);
rc = pthread_join(p2, NULL); assert (rc == 0);
printf ("main: end\n");
return 0O;

N NN R R R = ) | ) |
N =R © O 00 N3 O O = W N = O
——

Figure 26.2: Simple Thread Creation Code (t0.c)

AOS@UC Concurrency: An Introduction 6



Possible outcomes

main Thread1 Thread2 main Thread1 Thread2
starts running starts running
prints “main: begin” prints “main: begin”
creates Thread 1 creates Thread 1
creates Thread 2 nﬁ;sts "
waits for T1 Fetums
runs creates Thread 2
prints “A” runs
returns prints “B”
waits for T2 returns
runs waits for T1
prints ug re?urns immediately; T1 is done
waits for T2
. v ., returns returns immediately; T2 is done
prints “main: end prints “main: end”
main Thread 1 Thread?2
starts running
prints “main: begin”
creates Thread 1
creates Thread 2
runs
prints “B”
returns
waits for T1
runs
prints “A”
returns
waits for T2
returns immediately; T2 is done
prints “main: end”

AOS@UC Concurrency: An Introduction 7



AOS@UC

O 0 N O Ul R W N =

AR R s e e ) W W D W W W W W WNNNNRNNRNNRNR S s e e e e s
GO0 RE S0 IFTREDODRN RSO DI R DN RSO ®O0 0 RE®0 = O

#include <stdio.h>
#include <pthread.h>
#include "mythreads.h"

static volatile int counter = 0;

//

// mythread ()

//

// Simply adds 1 to counter repeatedly, in a loop
// No, this is not how you would add 10,000,000 to
// a counter, but it shows the problem nicely.

//

void =

mythread (void *arg)

{

printf ("$s: begin\n", (char x) arg);

int 1i;
for (i = 0; 1 < le7; i++) {
counter = counter + 1;

}
printf ("%$s: done\n", (char x) arg);
return NULL;

}

//

// main ()

//

// Just launches two threads (pthread_create)

// and then waits for them (pthread_join)

//

int

main (int argc, char xargvl([])

{
pthread_t pl, p2;
printf ("main: begin (counter = %d)\n", counter);
Pthread_create (&pl, NULL, mythread, "A");
Pthread_create (&p2, NULL, mythread, "B");

// join waits for the threads to finish
Pthread_join(pl, NULL);
Pthread_join (p2, NULL);
printf ("main: done with both (counter = %d)\n", counter);
return 0;

Concurrency: An Introduction



Possible outcomes

AOS@UC

prompt> gcc —o main main.c -Wall -pthread
prompt> ./main

main: begin (counter = 0)
A: begin

B: begin

A: done

B: done

main: done with both (counter = 20000000)

prompt> ./main

main: begin (counter = 0)
A: begin

B: begin

A: done

B: done

main: done with both (counter = 19345221)

prompt> ./main

main: begin (counter = 0)
A: begin

B: begin

A: done

B: done

main: done with both (counter = 19221041)

Concurrency: An Introduction




The heart of the problem: : Uncontrolled Scheduling

o Example with two threads

¢ counter = counter + 1 (default is 50)

+ We expect the result is 52. However,

(after instruction)

oS Thread1 Thread?2 PC %eax counter
mov 0x8049alc, %eax 100 0 50
add $0x1, %eax 105 50 50
108 51 50
interrupt
save T1's state (TCB)
restore T2's state (TCB) 100 0 50
mov 0x8049alc, %eax 105 50 50
add $0x1, %eax 108 51 50
mov %eax, 0x8049alc 113 51 51
interrupt
save T2’s state
restore T1's state 108 51 50
mov %eax, 0x8049alc 113 51 51

AOS@UC Concurrency: An Introduction 10



The wish for atomicity

o Do the read and modification of the memory in a single step

+ je. "all or nothing”!

o How ho handle complex data? (v.gr. a b-tree)

¢+ Use some atomic hardware support (called ) to

construct OS support

o A piece of code that accesses a shared variable and must not be

concurrently executed by more than one thread (mixing R and W).

+ Multiple threads executing critical section can result in a race condition.

+ Need to support atomicity for critical sections (mutual exclusion)

AOS@UC Concurrency: An Introduction 11



Locks

o Ensure that any such critical section executes as if it were a single

atomic instruction (execute a series of instructions atomically).

lock t mutex;

lock (&mutex); o .
balance = balance + 1; > Critical section
unlock (&mutex) ;

U s LW NP

AOS@UC Concurrency: An Introduction 12



One more problem: Waiting for another/s

o Sometimes the thread interaction is wait for another thread

¢ V.gr. When a thread should wait to another that had issued a 1/O

+ Need to be slept until the other thread receives the 1/O end

o Sometimes the action of multiple threads should be synchronous

+ V.gr. Many threads are performing in parallel an iteration in a numerical

problem

+ All threads should start the next iteration at once (barrier)

o This sleeping/waking cycle will be controlled by condition variables

AOS@UC Concurrency: An Introduction 13



o This lecture slide set is used in AOS course at University of Cantabria by V.Puente. Was initially
developed for Operating System course in Computer Science Dept. at Hanyang University. This
lecture slide set is for OSTEP book written by Remzi and Andrea Arpaci-Dusseau (at
University of Wisconsin)

AOS@UC Concurrency: An Introduction 14



