
21. Swapping: Mechanisms
Operating System: Three Easy Pieces

1AOS@UC

Relaxing Current Assumptions

p No more tiny address space

p No more address space “fit” into physical memory

p We need a additional level in the memory hierarchy

AOS@UC 2

Beyond Physical Memory: Mechanisms

p Why an additional level in the memory hierarchy?

w OS need a place to stash away portions of address space that currently

aren’t in great demand.

w In modern systems, this role is usually served by a hard disk drive

Mass Storage(hard disk, tape, etc...)

Main Memory

Cache

Registers

Memory Hierarchy in modern system

AOS@UC 3

Single large address for a process

p Convenience

w No need to first re-arrange for the code or data to be in memory when

before calling a function or accessing data (because already is “there”!)

w Otherwise (like in old days) overlays

p To Beyond just a single process.

w The addition of swap space allows the OS to support the illusion of a

large virtual memory for multiple concurrently-running process

AOS@UC 4

Swap Space

p Reserve some space on the disk for moving pages back and forth.

p OS need to remember to the swap space, in page-sized unit

Proc 0
[VPN 0]

Proc 1
[VPN 2]

Proc 1
[VPN 3]

Proc 2
[VPN 0]

Physical
Memory

PFN 0 PFN 1 PFN 2 PFN 3

Proc 0
[VPN 1]

Proc 0
[VPN 2] [Free]

Proc 1
[VPN 0]

Proc 1
[VPN 1]

Proc 3
[VPN 0]

Proc 2
[VPN 1]

Proc 3
[VPN 1]

Swap
Space

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

Physical Memory and Swap Space

AOS@UC 5

Present Bit

p Add some machinery higher up in the system in order to support

swapping pages to and from the disk.

w When the hardware looks in the PTE, it may find that the page is not

present in physical memory.

Value Meaning

1 page is present in physical memory

0 The page is not in memory but rather on disk.

AOS@UC 6

What If Memory Is Full ?

p The OS like to page out pages to make room for the new pages the

OS is about to bring in.

w The process of picking a page to kick out, or replace is known as page-

replacement policy

AOS@UC 7

The Page Fault

p Accessing page that is not in physical memory.

w If a page is not present and has been swapped disk, the OS need to swap

the page into memory in order to service the page fault.

p Confusing terminology sometimes : page-fault also refer to access

violations (perhaps page-miss?)

AOS@UC 8

p PTE used for data such as the PFN of the page for a disk address.

Page Fault Control Flow

i

Operating System

Secondary Storage

Load M

Virtual Address

Page Table

1. Reference

6. reinstruction

2.Trap

3. Check storage whether page is exist.

Page Frame

Page Frame

Page Frame

...

Page Frame

4. Get the page

5. Reset Page Table.

When the OS receives a page fault, it looks in the PTE and issues the request to disk.

AOS@UC 9

Page Fault Control Flow – Hardware

1: VPN = (VirtualAddress & VPN_MASK) >> SHIFT

2: (Success, TlbEntry) = TLB_Lookup(VPN)

3: if (Success == True) // TLB Hit

4: if (CanAccess(TlbEntry.ProtectBits) == True)

5: Offset = VirtualAddress & OFFSET_MASK

6: PhysAddr = (TlbEntry.PFN << SHIFT) | Offset

7: Register = AccessMemory(PhysAddr)

8: else RaiseException(PROTECTION_FAULT)

AOS@UC 10

Page Fault Control Flow – Hardware

9: else // TLB Miss

10: PTEAddr = PTBR + (VPN * sizeof(PTE))

11: PTE = AccessMemory(PTEAddr)

12: if (PTE.Valid == False)

13: RaiseException(SEGMENTATION_FAULT)

14: else

15: if (CanAccess(PTE.ProtectBits) == False)

16: RaiseException(PROTECTION_FAULT)

17: else if (PTE.Present == True)

18: // assuming hardware-managed TLB

19: TLB_Insert(VPN, PTE.PFN, PTE.ProtectBits)

20: RetryInstruction()

21: else if (PTE.Present == False)

22: RaiseException(PAGE_FAULT)

AOS@UC 11

Page Fault Control Flow – Always Software

1: PFN = FindFreePhysicalPage()

2: if (PFN == -1) // no free page found

3: PFN = EvictPage() // run replacement algorithm

4: DiskRead(PTE.DiskAddr, pfn) // sleep (waiting for I/O)

5: PTE.present = True // update page table with present

6: PTE.PFN = PFN // bit and translation (PFN)

7: RetryInstruction() // retry instruction

w The OS must find a physical frame for the soon-be-faulted-in page to

reside within.

w If there is no such page, waiting for the replacement algorithm to run and

kick some pages out of memory (is a policy not a mechanism).

w Why not via Hardware?

AOS@UC 12

When Replacements Really Occur

p OS waits until memory is entirely full, and only then replaces a page

to make room for some other page

w This is a little bit unrealistic, and there are many reason for the OS to

keep a small portion of memory free more proactively.

p Swap or Page Daemon: background process that runs in a some sort

of “hysteresis”

w There are fewer than LW pages (low-watermark) available, a background

thread that is responsible for freeing memory runs.

w The thread evicts pages until there are HW pages (high-watermark)

available.

w Evict multiple pages at once (optimize disk access)

AOS@UC 13

Beyond: Universal memory

p DRAM scalability issues

w Today aspect ratio is >40

p NVM will eventually replace DRAM

w V.gr. Intel Optane DIMM

p Not clear the frontier between disk and memory

p In the short term is starting to be used as an intermediate level between

disk and memory

p SRAM might be also replaced by other NVM memory?

AOS@UC 14

p This lecture slide set has been adapted to AOS course at University of Cantabria by V.Puente.

Was initially developed for Operating System course in Computer Science Dept. at Hanyang

University. This lecture slide set is for OSTEP book written by Remzi and Andrea Arpaci-

Dusseau (at University of Wisconsin)

AOS@UC 15

