
20. Paging: Smaller Tables
Operating System: Three Easy Pieces

AOS@UC 1 Paging: Smaller Tables

Paging: Linear Tables

p We usually have one page table for every process in the system.

w Assume that 32-bit address space with 4KB pages and 4-byte page-table

entry.

Page table size = 𝟐
𝟑𝟐

𝟐𝟏𝟐 ∗ 𝟒𝑩𝒚𝒕𝒆 = 𝟒𝑴𝑩𝐲𝐭𝐞

Page 0

Page 1

Page 2

Physical Memory

Page n

…

entry

…

entry
entry

entry

Page Table of
Process A

4B
4KB

Page tables are too big and thus consume too much memory.

AOS@UC 2 Paging: Smaller Tables

Paging: Smaller Tables

p Page table are too big and thus consume too much memory.

w Assume that 32-bit address space with 16KB pages and 4-byte page-table

entry.

Page 0

Page 1

Page 2

Physical Memory

Page n

…

entry

…

entry
entry

entry

Page Table of
Process A

4B
16KB

𝟐𝟑𝟐

𝟐𝟏𝟔 ∗ 𝟒 = 𝟏𝑴𝑩 per page table

But big pages might lead to internal fragmentation.

AOS@UC 3 Paging: Smaller Tables

p Single page table for the entries address space of process.

The Problem

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

code

heap

stack

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Allocate

Virtual Address
 Space

Physical Memory

A 16KB Address Space with 1KB Pages

PFN valid prot present dirty
10 1 r-x 1 0

- 0 - - -

- 0 - - -

- 0 - - -

15 1 rw- 1 1

… … … … …

- 0 - - -

3 1 rw- 1 1

23 1 rw- 1 1

A Page Table For 16KB Address Space

AOS@UC 4 Paging: Smaller Tables

p Most of the page table is unused, full of invalid entries.

The Problem

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

code

heap

stack

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Allocate

Virtual Address
 Space

Physical Memory

A 16KB Address Space with 1KB Pages

PFN valid prot present dirty
10 1 r-x 1 0

- 0 - - -

- 0 - - -

- 0 - - -

15 1 rw- 1 1

… … … … …

- 0 - - -

3 1 rw- 1 1

23 1 rw- 1 1

A Page Table For 16KB Address Space

AOS@UC 5 Paging: Smaller Tables

Hybrid Approach to the Problem: Paging and Segments

p In order to reduce the memory overhead of page tables.

w Using base not to point to the segment itself but rather to hold the

physical address of the page table of that segment.

w The bounds register is used to indicate the end of the page table.

AOS@UC 6 Paging: Smaller Tables

Simple Example of Hybrid Approach

p Each process has three page tables associated with it.

w When process is running, the base register for each of these segments

contains the physical address of a linear page table for that segment.

Seg VPN Offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Seg value Content

00 unused segment

01 code

10 heap

11 stack

32-bit Virtual address space with 4KB pages

AOS@UC 7 Paging: Smaller Tables

TLB miss on Hybrid Approach

p The hardware get to physical address from page table.

w The hardware uses the segment bits(SN) to determine which base and

bounds pair to use.

w The hardware then takes the physical address therein and combines it with

the VPN as follows to form the address of the page table entry(PTE) .

01: SN = (VirtualAddress & SEG_MASK) >> SN_SHIFT

02: VPN = (VirtualAddress & VPN_MASK) >> VPN_SHIFT

03: AddressOfPTE = Base[SN] + (VPN * sizeof(PTE))

AOS@UC 8 Paging: Smaller Tables

Problem of Hybrid Approach

p Hybrid Approach inherits Segmentation issues

w If we have a large but sparsely-used heap, we can still end up with a lot of

page table waste (most of the free space should be tracked)

w Causing external fragmentation to arise again

w Page Tables have arbitrary size: it’s hard to find space for them (or handle

it dynamically)

AOS@UC 9 Paging: Smaller Tables

Multi-level Page Tables

p Turns the linear page table into something like a tree.

w Chop up the page table into page-sized units.

w If an entire page of page-table entries is invalid, don’t allocate that page

of the page table at all.

w To track whether a page of the page table is valid, use a new structure,

called page directory.

AOS@UC 10 Paging: Smaller Tables

Multi-level Page Tables: Page directory

Multi-level Page Table

1 201

0 -

0 -

1 203

The Page Directory
PF

N
20

0

va
lid

PFN

1 rx 12

1 rx 13

0 - -

1 rw 100

PF
N

20
1

va
lid

p
ro

t

PFN

[Page 1 of PT:Not Allocated]

[Page 2 of PT: Not Allocated]

0 - -

0 - -

1 rw 86

1 rw 15

PF
N

20
4

200PBTR

Linear (Left) And Multi-Level (Right) Page Tables

AOS@UC 11

6 PAGING: SMALLER TABLES

va
lid

p
ro

t

PFN
1 rx 12
1 rx 13
0 - -
1 rw 100
0 - -
0 - -
0 - -
0 - -
0 - -
0 - -
0 - -
0 - -
0 - -
0 - -
1 rw 86
1 rw 15

Linear Page Table

PTBR 201

P
F

N
 2

0
1

P
F

N
 2

0
2

P
F

N
 2

0
3

P
F

N
 2

0
4

va
lid

p
ro

t

PFN
1 rx 12
1 rx 13
0 - -
1 rw 100

0 - -
0 - -
1 rw 86
1 rw 15

[Page 1 of PT: Not Allocated]

[Page 2 of PT: Not Allocated]

P
F

N
 2

0
1

P
F

N
 2

0
4

Multi-level Page Table

PDBR 200

va
lid

PFN
1 201
0 -
0 -
1 204P

F
N

 2
0
0

The Page Directory

Figure 20.3: Linear (Left) And Multi-Level (Right) Page Tables

page table as valid (the first and last); thus, just those two pages of the
page table reside in memory. And thus you can see one way to visualize
what a multi-level table is doing: it just makes parts of the linear page
table disappear (freeing those frames for other uses), and tracks which
pages of the page table are allocated with the page directory.

The page directory, in a simple two-level table, contains one entry per
page of the page table. It consists of a number of page directory entries
(PDE). A PDE (minimally) has a valid bit and a page frame number
(PFN), similar to a PTE. However, as hinted at above, the meaning of
this valid bit is slightly different: if the PDE entry is valid, it means that
at least one of the pages of the page table that the entry points to (via the
PFN) is valid, i.e., in at least one PTE on that page pointed to by this PDE,
the valid bit in that PTE is set to one. If the PDE entry is not valid (i.e.,
equal to zero), the rest of the PDE is not defined.

Multi-level page tables have some obvious advantages over approaches
we’ve seen thus far. First, and perhaps most obviously, the multi-level ta-
ble only allocates page-table space in proportion to the amount of address
space you are using; thus it is generally compact and supports sparse ad-
dress spaces.

Second, if carefully constructed, each portion of the page table fits
neatly within a page, making it easier to manage memory; the OS can
simply grab the next free page when it needs to allocate or grow a page
table. Contrast this to a simple (non-paged) linear page table2, which
is just an array of PTEs indexed by VPN; with such a structure, the en-
tire linear page table must reside contiguously in physical memory. For
a large page table (say 4MB), finding such a large chunk of unused con-
tiguous free physical memory can be quite a challenge. With a multi-level

2We are making some assumptions here, i.e., that all page tables reside in their entirety in
physical memory (i.e., they are not swapped to disk); we’ll soon relax this assumption.

OPERATING

SYSTEMS

[VERSION 0.92] WWW.OSTEP.ORG

Paging: Smaller Tables

Multi-level Page Tables: Page directory entries

p The page directory contains one entry per page of the page table.

w It consists of a number of page directory entries (PDE).

p PDE (minimally) has a valid bit and page frame number (PFN).

AOS@UC 12 Paging: Smaller Tables

Multi-level Page Tables: Advantage & Disadvantage

p Advantage

w Only allocates page-table space in proportion to the amount of address

space you are using.

w The OS can grab the next free page when it needs to allocate or grow a

page table.

p Disadvantage

w Multi-level table is a small example of a time-space trade-off.

w Complexity.

AOS@UC 13 Paging: Smaller Tables

p To understand the idea behind multi-level page tables better, let’s do

an example.

A Detailed Multi-Level Example

Flag Detail

Address space 16 KB

Page size 64 byte

Virtual address 14 bit

VPN 8 bit

Offset 6 bit

Page table entry 2!(256)

code

code

(free)

(free)

heap

heap

(free)

(free)

stack

stack A 16-KB Address Space With 64-byte Pages

0000 0000
0000 0001
 ...

1111 1111

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN Offset

AOS@UC 14 Paging: Smaller Tables

A Detailed Multi-Level Example: Page Directory Idx

p The page directory needs one entry per page of the page table

w it has 16 entries.

p The PDE is invalid à Raise an exception (The access is invalid)

14-bits Virtual address

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN Offset

Page Directory Index

AOS@UC 15 Paging: Smaller Tables

A Detailed Multi-Level Example: Page Table Idx

p The PDE is valid, we have more work to do.

w To fetch the page table entry(PTE) from the page of the page table

pointed to by this page-directory entry.

p This page-table index can then be used to index into the page table

itself.

14-bits Virtual address

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN Offset

Page Directory Index Page Table Index

AOS@UC 16 Paging: Smaller Tables

Example

AOS@UC 17 Paging: Smaller Tables

More than Two Levels

p In some cases, a deeper tree is possible (and needed).

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Flag Detail

Virtual address 30 bit

Page size 512 byte

VPN 21 bit

Offset 9 bit

offsetVPN

AOS@UC 18 Paging: Smaller Tables

More than Two Level : Page Table Index

p In some cases, a deeper tree is possible (and needed).

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

offset

Flag Detail

Virtual address 30 bit

Page size 512 byte

VPN 21 bit

Offset 9 bit

Page entry per page 128 PTEs

VPN

log! 128 = 7
4bytes per PTE

Page Table IndexPage Directory Index

AOS@UC 19 Paging: Smaller Tables

𝑃𝐷 ℎ𝑎𝑠 2"#	entries	=	16K	·	4	=	64KB

More than Two Level : Page Directory Within a Page

p If our page directory has 2!"entries, it spans not one page but 128

assuming size_of(PDE) == size_of(PTE)

p To remedy this problem, we build a further level of the tree, by

splitting the page directory itself into multiple pages of the page

directory.
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

offsetVPN

PD Index 0 PD Index 1 Page Table Index

AOS@UC 20 Paging: Smaller Tables

Multi-level Page Table Control Flow

01: VPN = (VirtualAddress & VPN_MASK) >> SHIFT

02: (Success,TlbEntry) = TLB_Lookup(VPN)

03: if(Success == True) //TLB Hit

04: if(CanAccess(TlbEntry.ProtectBits) == True)

05: Offset = VirtualAddress & OFFSET_MASK

06: PhysAddr = (TlbEntry.PFN << SHIFT) | Offset

07: Register = AccessMemory(PhysAddr)

08: else RaiseException(PROTECTION_FAULT);

09: else // perform the full multi-level lookup

w (1 lines) extract the virtual page number(VPN)

w (2 lines) check if the TLB holds the translation for this VPN

w (5-8 lines) extract the page frame number from the relevant TLB entry, and

form the desired physical address and access memory

AOS@UC 21 Paging: Smaller Tables

Multi-level Page Table Control Flow

11: else

12: PDIndex = (VPN & PD_MASK) >> PD_SHIFT

13: PDEAddr = PDBR + (PDIndex * sizeof(PDE))

14: PDE = AccessMemory(PDEAddr)

15: if(PDE.Valid == False)

16: RaiseException(SEGMENTATION_FAULT)

17: else // PDE is Valid: now fetch PTE from PT

w (11 lines) extract the Page Directory Index(PDIndex)

w (13 lines) get Page Directory Entry(PDE)

w (15-17 lines) Check PDE valid flag. If valid flag is true, fetch Page Table

entry from Page Table

AOS@UC 22 Paging: Smaller Tables

The Translation Process: Remember the TLB

18: PTIndex = (VPN & PT_MASK) >> PT_SHIFT

19: PTEAddr = (PDE.PFN << SHIFT) + (PTIndex * sizeof(PTE))

20: PTE = AccessMemory(PTEAddr)

21: if(PTE.Valid == False)

22: RaiseException(SEGMENTATION_FAULT)

23: else if(CanAccess(PTE.ProtectBits) == False)

24: RaiseException(PROTECTION_FAULT);

25: else

26: TLB_Insert(VPN, PTE.PFN , PTE.ProtectBits)

27: RetryInstruction()

AOS@UC 23 Paging: Smaller Tables

Real Multilevel Page Tables (248B=256TB)

SVS@UC 24X86-64: MMU Virtualization With EPT

Virtual Address

Since 2021 (256B=128PB)

SVS@UC 25X86-64: MMU Virtualization With EPT

Inverted Page Table

p Keeping a single page table that has an entry for each physical page

of the system.

p The entry tells us which process is using this page, and which virtual

page of that process maps to this physical page.

p Used with a hashing table (hash anchor table) in order to allow

practical implementations

AOS@UC 26 Paging: Smaller Tables

Swapping Page Tables to Disk

p When memory conditions are harsh, kernel allocated pages can be

swapped to disk

p Page tables (a portion of it) might reside only in disk at a given time

p Ignored for sake of simplicity until now (we have no clue about

swapping yet)

AOS@UC 27 Paging: Smaller Tables

p This lecture slide has been adapted for AOS course at University of Cantabria by V.Puente.

Was initially developed for Operating System course in Computer Science Dept. at Hanyang

University. This lecture slide set is for OSTEP book written by Remzi and Andrea Arpaci-

Dusseau (at University of Wisconsin)

AOS@UC 28 Paging: Smaller Tables

