
20. Paging: Smaller Tables
Operating System: Three Easy Pieces
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Paging: Linear Tables

p We usually have one page table for every process in the system.

w Assume that 32-bit address space with 4KB pages and 4-byte page-table 

entry.

Page table size = 𝟐
𝟑𝟐

𝟐𝟏𝟐 ∗ 𝟒𝑩𝒚𝒕𝒆 = 𝟒𝑴𝑩𝐲𝐭𝐞
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Page tables are too big and thus consume too much memory. 
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Paging: Smaller Tables

p Page table are too big and thus consume too much memory. 

w Assume that 32-bit address space with 16KB pages and 4-byte page-table 

entry.
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𝟐𝟑𝟐

𝟐𝟏𝟔 ∗ 𝟒 = 𝟏𝑴𝑩 per page table

But big pages might lead to internal fragmentation.
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p Single page table for the entries address space of process.

The Problem
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A Page Table For 16KB Address Space
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p Most of the page table is unused, full of invalid entries.

The Problem
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Hybrid Approach to the Problem: Paging and Segments 

p In order to reduce the memory overhead of page tables.

w Using base not to point to the segment itself but rather to hold the 

physical address of the page table of that segment.

w The bounds register is used to indicate the end of the page table.
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Simple Example of Hybrid Approach

p Each process has three page tables associated with it.

w When process is running, the base register for each of these segments 

contains the physical address of a linear page table for that segment.

Seg VPN Offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9   8   7  6  5   4   3  2  1   0 

Seg value Content

00 unused segment

01 code

10 heap

11 stack

32-bit Virtual address space with 4KB pages
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TLB miss on Hybrid Approach

p The hardware get to physical address from page table.

w The hardware uses the segment bits(SN) to determine which base and 

bounds pair to use.

w The hardware then takes the physical address therein and combines it with 

the VPN as follows to form the address of the page table entry(PTE) .

01: SN = (VirtualAddress & SEG_MASK) >> SN_SHIFT

02: VPN = (VirtualAddress & VPN_MASK) >> VPN_SHIFT

03: AddressOfPTE = Base[SN] + (VPN * sizeof(PTE))
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Problem of Hybrid Approach

p Hybrid Approach inherits Segmentation issues

w If we have a large but sparsely-used heap, we can still end up with a lot of 

page table waste (most of the free space should be tracked)

w Causing external fragmentation to arise again

w Page Tables have arbitrary size: it’s hard to find space for them (or handle 

it dynamically)
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Multi-level Page Tables

p Turns the linear page table into something like a tree.

w Chop up the page table into page-sized units.

w If an entire page of page-table entries is invalid, don’t allocate that page 

of the page table at all.

w To track whether a page of the page table is valid, use a new structure, 

called page directory. 
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Multi-level Page Tables: Page directory
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Figure 20.3: Linear (Left) And Multi-Level (Right) Page Tables

page table as valid (the first and last); thus, just those two pages of the
page table reside in memory. And thus you can see one way to visualize
what a multi-level table is doing: it just makes parts of the linear page
table disappear (freeing those frames for other uses), and tracks which
pages of the page table are allocated with the page directory.

The page directory, in a simple two-level table, contains one entry per
page of the page table. It consists of a number of page directory entries
(PDE). A PDE (minimally) has a valid bit and a page frame number
(PFN), similar to a PTE. However, as hinted at above, the meaning of
this valid bit is slightly different: if the PDE entry is valid, it means that
at least one of the pages of the page table that the entry points to (via the
PFN) is valid, i.e., in at least one PTE on that page pointed to by this PDE,
the valid bit in that PTE is set to one. If the PDE entry is not valid (i.e.,
equal to zero), the rest of the PDE is not defined.

Multi-level page tables have some obvious advantages over approaches
we’ve seen thus far. First, and perhaps most obviously, the multi-level ta-
ble only allocates page-table space in proportion to the amount of address
space you are using; thus it is generally compact and supports sparse ad-
dress spaces.

Second, if carefully constructed, each portion of the page table fits
neatly within a page, making it easier to manage memory; the OS can
simply grab the next free page when it needs to allocate or grow a page
table. Contrast this to a simple (non-paged) linear page table2, which
is just an array of PTEs indexed by VPN; with such a structure, the en-
tire linear page table must reside contiguously in physical memory. For
a large page table (say 4MB), finding such a large chunk of unused con-
tiguous free physical memory can be quite a challenge. With a multi-level

2We are making some assumptions here, i.e., that all page tables reside in their entirety in
physical memory (i.e., they are not swapped to disk); we’ll soon relax this assumption.

OPERATING
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[VERSION 0.92] WWW.OSTEP.ORG
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Multi-level Page Tables: Page directory entries

p The page directory contains one entry per page of the page table.

w It consists of a number of page directory entries (PDE).

p PDE (minimally) has a valid bit and page frame number (PFN).
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Multi-level Page Tables: Advantage & Disadvantage

p Advantage

w Only allocates page-table space in proportion to the amount of address 

space you are using.

w The OS can grab the next free page when it needs to allocate or grow a 

page table.

p Disadvantage

w Multi-level table is a small example of a time-space trade-off.

w Complexity.
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p To understand the idea behind multi-level page tables better, let’s do 

an example.

A Detailed Multi-Level Example

Flag Detail

Address space 16 KB

Page size 64 byte 

Virtual address 14 bit

VPN 8 bit

Offset 6 bit

# Page table entry 2!(256)

code

code

(free)

(free)

heap

heap

(free)

(free)

stack

stack A 16-KB Address Space With 64-byte Pages

0000 0000
0000 0001
       ...

1111 1111

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN Offset
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A Detailed Multi-Level Example: Page Directory Idx

p The page directory needs one entry per page of the page table

w it has 16 entries.

p The PDE is invalid à Raise an exception (The access is invalid)

14-bits Virtual address

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN Offset

Page Directory Index
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A Detailed Multi-Level Example: Page Table Idx

p The PDE is valid, we have more work to do.

w To fetch the page table entry(PTE) from the page of the page table 

pointed to by this page-directory entry.

p This page-table index can then be used to index into the page table 

itself.

14-bits Virtual address

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN Offset

Page Directory Index Page Table Index
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Example
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More than Two Levels

p In some cases, a deeper tree is possible (and needed).

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9  8  7  6  5  4   3   2  1   0 

Flag Detail

Virtual address 30 bit

Page size 512 byte

VPN 21 bit

Offset 9 bit

offsetVPN
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More than Two Level : Page Table Index

p In some cases, a deeper tree is possible (and needed).

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9  8  7  6  5  4   3   2  1   0 

offset

Flag Detail

Virtual address 30 bit

Page size 512 byte

VPN 21 bit

Offset 9 bit

Page entry per page 128 PTEs

VPN

log! 128 = 7
4bytes per PTE

Page Table IndexPage Directory Index
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More than Two Level : Page Directory Within a Page

p If our page directory has 2!"entries, it spans not one page but 128 

assuming size_of(PDE) == size_of(PTE)

p To remedy this problem, we build a further level of the tree, by 

splitting the page directory itself into multiple pages of the page 

directory.
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9  8  7  6  5  4   3   2  1   0 

offsetVPN

PD Index 0 PD Index 1 Page Table Index
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Multi-level Page Table Control Flow

01: VPN = (VirtualAddress & VPN_MASK) >> SHIFT

02: (Success,TlbEntry) = TLB_Lookup(VPN)

03: if(Success == True) //TLB Hit

04:   if(CanAccess(TlbEntry.ProtectBits) == True)

05:  Offset = VirtualAddress & OFFSET_MASK

06:  PhysAddr = (TlbEntry.PFN << SHIFT) | Offset

07:  Register = AccessMemory(PhysAddr)

08:   else RaiseException(PROTECTION_FAULT);

09: else // perform the full multi-level lookup

w (1 lines) extract the virtual page number(VPN)

w (2 lines) check if the TLB holds the translation for this VPN

w (5-8 lines) extract the page frame number from the relevant TLB entry, and 

form the desired physical address and access memory
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Multi-level Page Table Control Flow

11: else

12:  PDIndex = (VPN & PD_MASK) >> PD_SHIFT

13:  PDEAddr = PDBR + (PDIndex * sizeof(PDE))

14:  PDE = AccessMemory(PDEAddr)

15:  if(PDE.Valid == False)

16:   RaiseException(SEGMENTATION_FAULT)

17:  else // PDE is Valid: now fetch PTE from PT

w (11 lines) extract the Page Directory Index(PDIndex) 

w (13 lines) get Page Directory Entry(PDE)

w (15-17 lines) Check PDE valid flag. If valid flag is true, fetch Page Table 

entry from Page Table
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The Translation Process: Remember the TLB

18: PTIndex = (VPN & PT_MASK) >> PT_SHIFT

19: PTEAddr = (PDE.PFN << SHIFT) + (PTIndex * sizeof(PTE))

20: PTE = AccessMemory(PTEAddr)

21: if(PTE.Valid == False) 

22:  RaiseException(SEGMENTATION_FAULT)

23: else if(CanAccess(PTE.ProtectBits) == False)

24:  RaiseException(PROTECTION_FAULT);

25: else 

26:  TLB_Insert(VPN, PTE.PFN , PTE.ProtectBits)

27:  RetryInstruction()
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Real Multilevel Page Tables (248B=256TB)

SVS@UC 24X86-64: MMU Virtualization With EPT

Virtual Address



Since 2021 (256B=128PB)

SVS@UC 25X86-64: MMU Virtualization With EPT



Inverted Page Table

p Keeping a single page table that has an entry for each physical page 

of the system.

p The entry tells us which process is using this page, and which virtual 

page of that process maps to this physical page.

p Used with a hashing table (hash anchor table) in order to allow 

practical implementations
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Swapping Page Tables to Disk

p When memory conditions are harsh, kernel allocated pages can be 

swapped to disk

p Page tables (a portion of it) might reside only in disk at a given time

p Ignored for sake of simplicity until now (we have no clue about 

swapping yet)
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p This lecture slide has been adapted for AOS course at University of Cantabria by V.Puente. 

Was initially developed for Operating System course in Computer Science Dept. at Hanyang 

University. This lecture slide set is for OSTEP book  written by Remzi and Andrea Arpaci-

Dusseau (at University of Wisconsin)
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