
19. Translation Lookaside Buffers
Operating System: Three Easy Pieces

1 AOS@UC Translation Lookaside Buffers

TLB

p Part of the chip’s memory-management unit(MMU).

p A hardware cache of popular virtual-to-physical address translation.

MMU

CPU
PFN 0

TLB
popular v to p

PFN1

PFN 2

TLB Hit

Address Translation with TLB Page Table

PFN n

…

Logical
Address

TLB
Lookup

Page Table
all v to p entries

TLB Miss

Physical
Address

AOS@UC 2 Translation Lookaside Buffers

TLB Basic Algorithms

w (1 lines) extract the virtual page number (VPN).

w (2 lines) check if the TLB holds the translation for this VPN.

w (5-8 lines) extract the page frame number from the relevant TLB entry, and

form the desired physical address and access memory.

1: VPN = (VirtualAddress & VPN_MASK) >> SHIFT

2: (Success , TlbEntry) = TLB_Lookup(VPN)

3: if(Success == True){ // TLB Hit

4: if(CanAccess(TlbEntry.ProtectBit) == True){

5: offset = VirtualAddress & OFFSET_MASK

6: PhysAddr = (TlbEntry.PFN << SHIFT) | Offset

7: AccessMemory(PhysAddr)

8: }else RaiseException(PROTECTION_ERROR)

AOS@UC 3 Translation Lookaside Buffers

TLB Basic Algorithms (Cont.)

w (11-13 lines) Accesses the page table to find the translation.

w (13-17 lines) Check if PTE is ok

w (19 lines) updates the TLB with the translation.

11: }else{ //TLB Miss

12: PTEAddr = PTBR + (VPN * sizeof(PTE))

13: PTE = AccessMemory(PTEAddr)
14: if (PTE.Valid == False) {
15: RaiseException(SEGMENTATION_FAULT)
16: }else if (CanAccess(PTE.ProtectBits) == False){
17: RaiseException(PROTECTION_FAULT)

18: }else{

19: TLB_Insert(VPN , PTE.PFN , PTE.ProtectBits)

20: RetryInstruction()}

21: }

22:}

AOS@UC 4 Translation Lookaside Buffers

p How a TLB can improve its performance.

Example: Accessing An Array

OFFSET
00 04 08 12 16

VPN = 00

VPN = 01

VPN = 03

VPN = 04

VPN = 05

VPN = 06 a[0] a[1] a[2]

VPN = 07 a[3] a[4] a[5] a[6]

VPN = 08 a[7] a[8] a[9]

VPN = 09

VPN = 10

VPN = 11

VPN = 12

VPN = 13

VPN = 14

VPN = 15

0: int sum = 0 ;

1: for(i=0; i<10; i++){

2: sum+=a[i];

3: }

3 misses and 7 hits.
Thus, TLB hit rate is 70%.

The TLB improves performance
 due to spatial locality

AOS@UC 5 Translation Lookaside Buffers

Locality

p Temporal Locality

w An instruction or data item that has been recently accessed will likely be

re-accessed soon in the future.

p Spatial Locality

w If a program accesses memory at address x, it will likely soon access

memory near x.

1st “sum” access is page1.
2nd “sum” access is also page1.

Virtual Memory
Pag

e 1

Pag
e 2

Pag
e 3

Pag
e 4

Pag
e 5

Pag
e n

1st “array” access is page1.
Nnd “array” access is near by page1.

Virtual Memory

…

Pag
e 1

Pag
e 2

Pag
e 3

Pag
e 4

Pag
e 5

Pag
e n

…

Pag
e 6

Pag
e 7

AOS@UC 6 Translation Lookaside Buffers

Who Handles The TLB Miss?

p Hardware handle the TLB miss entirely on CISC.

w The hardware has to know exactly where the page tables are located in

memory.

w The hardware would “walk” the page table (TLB walker), find the correct

page-table entry and extract the desired translation, update and retry

instruction. This is the previous algorithm.

w hardware-managed TLB.

AOS@UC 7 Translation Lookaside Buffers

Who Handles The TLB Miss? (Cont.)

p RISC have what is known as a software-managed TLB.

w On a TLB miss, the hardware raises exception(trap handler).

¢ Trap handler is code within the OS that is written with the express purpose of

handling TLB miss.

AOS@UC 8 Translation Lookaside Buffers

TLB Control Flow algorithm(OS Handled)

1: VPN = (VirtualAddress & VPN_MASK) >> SHIFT

2: (Success, TlbEntry) = TLB_Lookup(VPN)

3: if (Success == True){ // TLB Hit

4: if (CanAccess(TlbEntry.ProtectBits) == True){

5: Offset = VirtualAddress & OFFSET_MASK

6: PhysAddr = (TlbEntry.PFN << SHIFT) | Offset

7: Register = AccessMemory(PhysAddr)}

8: else{

9: RaiseException(PROTECTION_FAULT)}}

10: else {// TLB Miss

11: RaiseException(TLB_MISS)}

AOS@UC 9 Translation Lookaside Buffers

TLB entry

p TLB is managed by Full Associative method.

w A typical TLB might have 32 to 128 entries.

w Hardware search the entire TLB in parallel to find the desired translation

(i.e., a cache without index bit, i.e., tag=VPN)

w other bits: valid bits , protection bits, address-space identifier, dirty bit

VPN PFN other bits

Typical TLB entry look like this

AOS@UC 10 Translation Lookaside Buffers

TLB Issue: Context Switching

Process A

Process B

TLB Table

Page 0

Page 1

Page 2

Virtual Memory

Page n

…access VPN10

Page 0

Page 1

Page 2

Page n

…

Virtual Memory

VPN PFN valid prot

10 100 1 rwx

- - - -

- - - -

- - - -

Insert TLB Entry

AOS@UC 11 Translation Lookaside Buffers

TLB Issue: Context Switching

Process A

Process B

TLB Table

Page 0

Page 1

Page 2

Virtual Memory

Page n

…

Page 0

Page 1

Page 2

Page n

…

Virtual Memory

VPN PFN valid prot

10 100 1 rwx

- - - -

10 170 1 rwx

- - - -

Context
Switching

access VPN10

Insert TLB Entry

AOS@UC 12 Translation Lookaside Buffers

TLB Issue: Context Switching

Process A

Process B

TLB Table

Page 0

Page 1

Page 2

Virtual Memory

Page n

…

Page 0

Page 1

Page 2

Page n

…

Virtual Memory

VPN PFN valid prot

10 100 1 rwx

- - - -

10 170 1 rwx

- - - -

Can’t Distinguish which entry is
meant for which process

AOS@UC 13 Translation Lookaside Buffers

To Solve Problem

p Provide an address space identifier(ASID) field in the TLB.

Process A

Process B

TLB Table

Page 0

Page 1

Page 2

Virtual Memory

Page n

…

Page 0

Page 1

Page 2

Page n

…

Virtual Memory

VPN PFN valid prot ASID

10 100 1 rwx 1

- - - - -

10 170 1 rwx 2

- - - - -

AOS@UC 14 Translation Lookaside Buffers

Another Case

p Two processes share a page.

w Process 1 is sharing physical page 101 with Process2.

w P1 maps this page into the 10th page of its address space.

w P2 maps this page to the 50th page of its address space.

VPN PFN valid prot ASID

10 101 1 rwx 1

- - - - -

50 101 1 rwx 2

- - - - -

Sharing of pages is
useful as it reduces the

number of physical
pages in use.

AOS@UC 15 Translation Lookaside Buffers

TLB Replacement Policy

p LRU(Least Recently Used)

w Evict an entry that has not recently been used.

w Take advantage of locality in the memory-reference stream.

Reference Row

7

Page Frame:

7

0

7

0

1

2

0

1

2

0

3

4

0

3

4

0

2

4

3

2

0

3

2

1

3

2

1

0

2

Total 11 TLB miss

7 0 1 2 0 3 0 4 2 3 0 23 1 2 0 1

AOS@UC 16 Translation Lookaside Buffers

A Real TLB Entry

VPN

0 1 2 3 4 5 6 7 8 9 10 11 … 19 … 31

G ASID

PFN C D V

All 64 bits of this TLB entry(example of MIPS R4000)

Flag Content

19-bit VPN The rest reserved for the kernel.

24-bit PFN Systems can support with up to 64GB of main memory(2!" ∗ 4𝐾𝐵 pages).

Global bit(G) Used for pages that are globally-shared among processes (ignore ASID).

ASID OS can use to distinguish between address spaces.

Coherence bit(C) determine how a page is cached by the hardware.

Dirty bit(D) marking when the page has been written.

Valid bit(V) tells the hardware if there is a valid translation present in the entry.

AOS@UC 17 Translation Lookaside Buffers

ISA provides the mechanisms to control the TLB content:
TLBP (probe), TLBR(read), TLBWI (replace index),

TLBWRI (replace random)

How Serious the TLB can be?

AOS@UC 18 Translation Lookaside Buffers

TLB today

p Applications with very large memory footprint might be heavily

impacted by TLB size (i.e., the locality of the code/data is too large

exceeding TLB-coverage)

w Data/Instruction Separate TLBs

w Multiple level TLB

w Mega pages

w No TLB è no pages for a fraction of the address space

p TLB is an itchy issue for virtualization

w Complex hardware support required to minimize performance overheads

w Nested and deep multilevel page tables makes is TLB performance critical

AOS@UC 19 Translation Lookaside Buffers

Mega pages (2MB pages)

SVS@UC 20X86-64: MMU Virtualization With EPT

Giga Pages (1GB Pages)

SVS@UC 21X86-64: MMU Virtualization With EPT

State-of-the-art TLB (AMD Zen4)

AOS@UC 22 Translation Lookaside Buffers

p This lecture slide set is used in AOS course at University of Cantabria. Was initially developed

for Operating System course in Computer Science Dept. at Hanyang University. This lecture

slide set is for OSTEP book written by Remzi and Andrea Arpaci-Dusseau (at University of

Wisconsin)

AOS@UC 24 Translation Lookaside Buffers

