
16. Segmentation
Operating System: Three Easy Pieces

1AOS@UC Segmentation

Inefficiency of the Base and Bound Approach

p Big chunk of “free” space

p “free” space takes up physical memory.

p Hard to run when an address space does not fit

into physical memory

(free)

14KB

Program Code

16KB

0KB

2KB

4KB

Heap

Stack

6KB

15KB

5KB

3KB

1KB

AOS@UC 2Segmentation

Segmentation

p Segment is just a contiguous portion of the address space of a

particular length.

w Logically-different segment: code, stack, heap

p Each segment can be placed in different part of physical memory.

w Base and bounds exist per each segment.

AOS@UC 3Segmentation

MMU

Placing Segment In Physical Memory

0KB

16KB

32KB

48KB

64KB

Code

Physical Memory

(not in use)

(not in use)

Heap

Stack

Operating System

(not in use)

Segment Base Size
Code 32K 2K
Heap 34K 2K
Stack 28K 2K

AOS@UC 4Segmentation

Address Translation on Segmentation

p The offset of virtual address 100 is 100.

w The code segment starts at virtual address 0 in address space.

Segment Base Size
Code 32K 2K

0KB

2KB
Program Code

4KB

16KB

32KB
100 instruction

𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑏𝑎𝑠𝑒

Heap

Code

(not in use)

(not in use)

34KB

𝟏𝟎𝟎 + 𝟑𝟐𝑲 𝒐𝒓 𝟑𝟐𝟖𝟔𝟖
is the desired

physical address

AOS@UC 5Segmentation

Address Translation on Segmentation(Cont.)

p The offset of virtual address 4200 is 104.

w The heap segment starts at virtual address 4096 in address space.

Segment Base Size
Heap 34K 2K

32KB

Heap

Code

(not in use)

(not in use)

34KB 𝟏𝟎𝟒 + 𝟑𝟒𝑲 𝒐𝒓 𝟑𝟒𝟗𝟐𝟎
is the desired

physical address
6KB

Heap

4KB

Address Space

Physical Memory

4200 data

36KB

𝑽𝒊𝒓𝒕𝒖𝒂𝒍 𝒂𝒅𝒅𝒓𝒆𝒔𝒔 + 𝒃𝒂𝒔𝒆 is not the correct physical address!

AOS@UC 6Segmentation

Segmentation Fault or Violation

p If an illegal address such as 7KB which is beyond the end of heap is

referenced, the OS occurs segmentation fault.

w The hardware detects that address is out of bounds.

6KB

Heap

4KB

(not in use)

Address Space

7KB

8KB

AOS@UC 7Segmentation

Referring to Segment

p Explicit approach

w Chop up the address space into segments based on the top few bits of

virtual address.

p Example: virtual address 4200 (01000001101000)

013 112 211 310 49 8 7 6 5

Segment Offset

013 112 211 310 49 8 7 6 5

Segment Offset

00 01 00 10 00 0 0 1 1

Segment bits
Code 00
Heap 01
Stack 10
- 11

AOS@UC 8Segmentation

Referring to Segment(Cont.)

w SEG_MASK = 0x3000(11000000000000)

w SEG_SHIFT = 12

w OFFSET_MASK = 0xFFF (00111111111111)

1 // get top 2 bits of 14-bit VA
2 Segment = (VirtualAddress & SEG_MASK) >> SEG_SHIFT
3 // now get offset
4 Offset = VirtualAddress & OFFSET_MASK
5 if (Offset >= Bounds[Segment])
6 RaiseException(PROTECTION_FAULT)
7 else
8 PhysAddr = Base[Segment] + Offset
9 Register = AccessMemory(PhysAddr)

AOS@UC 9Segmentation

Referring to Stack Segment

p Stack grows backward.

p Extra hardware support is need.

w The hardware checks which way the segment grows.

w 1: positive direction, 0: negative direction

Segment Base Size Grows Positive?
Code 32K 2K 1
Heap 34K 2K 1
Stack 28K 2K 0

Stack

(not in use)

(not in use)

28KB

26KB

Physical Memory

Segment Register(with Negative-Growth Support)

AOS@UC 10Segmentation

Support for Sharing

p Segment can be shared between address space.

w Code sharing is still in use in systems today.

w by extra hardware support.

p Extra hardware support is need for form of Protection bits.

w A few more bits per segment to indicate permissions of read, write and

execute.

Segment Base Size Grows Positive? Protection
Code 32K 2K 1 Read-Execute
Heap 34K 2K 1 Read-Write
Stack 28K 2K 0 Read-Write

Segment Register Values(with Protection)

AOS@UC 11Segmentation

Fine-Grained and Coarse-Grained

p Coarse-Grained means segmentation in a small number.

w e.g., code, heap, stack.

p Fine-Grained segmentation allows more flexibility for address space

in some early system.

w To support many segments, Hardware support with a segment table

(stored in memory) is required.

w Exploit temporal locality (mem. usage)

AOS@UC 12Segmentation

OS support: Fragmentation

p External Fragmentation: little holes of free space in physical memory that make

difficulty to allocate new segments.

w There is 24KB free, but not in one contiguous segment.

w The OS cannot satisfy the 20KB request.

p Compaction: rearranging the exiting segments in physical memory.

w Compaction is costly.

¢ Stop running process.

¢ Copy data to somewhere.

¢ Change segment register value.

p 1000 ways to solve it

w None of them are the “best”

p Added to creating, terminating, and context switches

AOS@UC 13Segmentation

Memory Compaction

0KB

16KB

32KB

48KB

64KB

Not compacted

Operating System8KB

24KB

40KB

56KB

Allocated

(not in use)

0KB

16KB

32KB

48KB

64KB

Operating System8KB

24KB

40KB

56KB

(not in use)

(not in use)

Allocated

(not in use)

Allocated

Allocated

Compacted

AOS@UC 14Segmentation

p This lecture slide set is used in AOS course at University of Cantabria. Was initially developed

for Operating System course in Computer Science Dept. at Hanyang University. This lecture

slide set is for OSTEP book written by Remzi and Andrea Arpaci-Dusseau (at University of

Wisconsin)

AOS@UC 15Segmentation

