
16. Segmentation
Operating System: Three Easy Pieces
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Inefficiency of the Base and Bound Approach

p Big chunk of “free” space

p “free” space takes up physical memory.

p Hard to run when an address space does not fit

into physical memory
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Segmentation

p Segment is just a contiguous portion of the address space of a 

particular length.

w Logically-different segment: code, stack, heap

p Each segment can be placed in different part of physical memory.

w Base and bounds exist per each segment.
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MMU

Placing Segment In Physical Memory
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Segment  Base Size
Code 32K 2K
Heap 34K 2K
Stack 28K 2K
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Address Translation on Segmentation

p The offset of virtual address 100 is 100.

w The code segment starts at virtual address 0 in address space.

Segment    Base Size
Code 32K 2K
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100 instruction

𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑏𝑎𝑠𝑒
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34KB

𝟏𝟎𝟎 + 𝟑𝟐𝑲 𝒐𝒓 𝟑𝟐𝟖𝟔𝟖
is the desired 

physical address
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Address Translation on Segmentation(Cont.)

p The offset of virtual address 4200 is 104.

w The heap segment starts at virtual address 4096 in address space.

Segment    Base Size
Heap 34K 2K
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Heap

Code
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34KB 𝟏𝟎𝟒 + 𝟑𝟒𝑲 𝒐𝒓 𝟑𝟒𝟗𝟐𝟎
is the desired 

physical address
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𝑽𝒊𝒓𝒕𝒖𝒂𝒍 𝒂𝒅𝒅𝒓𝒆𝒔𝒔 + 𝒃𝒂𝒔𝒆 is not the correct physical address!
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Segmentation Fault or Violation

p If an illegal address such as 7KB which is beyond the end of heap is 

referenced, the OS occurs segmentation fault.

w The hardware detects that address is out of bounds. 
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Referring to Segment

p Explicit approach

w Chop up the address space into segments based on the top few bits of 

virtual address.

p Example: virtual address 4200 (01000001101000)

013 112 211 310 49 8 7 6 5

Segment Offset

013 112 211 310 49 8 7 6 5

Segment Offset

00 01 00 10 00 0 0 1 1

Segment  bits
Code 00
Heap 01
Stack 10
- 11
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Referring to Segment(Cont.)

w SEG_MASK = 0x3000(11000000000000)

w SEG_SHIFT = 12

w OFFSET_MASK = 0xFFF (00111111111111)

1   // get top 2 bits of 14-bit VA
2   Segment = (VirtualAddress & SEG_MASK) >> SEG_SHIFT 
3 // now get offset 
4   Offset = VirtualAddress & OFFSET_MASK
5   if (Offset >= Bounds[Segment]) 
6   RaiseException(PROTECTION_FAULT) 
7   else 
8   PhysAddr = Base[Segment] + Offset 
9   Register = AccessMemory(PhysAddr) 
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Referring to Stack Segment

p Stack grows backward.

p Extra hardware support is need.

w The hardware checks which way the segment grows.

w 1: positive direction, 0: negative direction 

Segment  Base Size  Grows Positive?
Code 32K 2K        1             
Heap 34K 2K        1 
Stack 28K 2K        0

Stack

(not in use)

(not in use)

28KB

26KB

Physical Memory

Segment Register(with Negative-Growth Support)
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Support for Sharing

p Segment can be shared between address space.

w Code sharing is still in use in systems today.

w by extra hardware support.

p Extra hardware support is need for form of Protection bits. 

w A few more bits per segment to indicate permissions of read, write and 

execute. 

Segment  Base Size  Grows Positive?  Protection
Code 32K 2K        1           Read-Execute             
Heap 34K 2K        1           Read-Write 
Stack 28K 2K        0           Read-Write

Segment Register Values(with Protection)
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Fine-Grained and Coarse-Grained

p Coarse-Grained means segmentation in a small number.

w e.g., code, heap, stack.

p Fine-Grained segmentation allows more flexibility for address space 

in some early system.

w To support many segments, Hardware support with a segment table

(stored in memory) is required. 

w Exploit temporal locality (mem. usage)
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OS support: Fragmentation

p External Fragmentation: little holes of free space in physical memory that make 

difficulty to allocate new segments.

w There is 24KB free, but not in one contiguous segment.

w The OS cannot satisfy the 20KB request.

p Compaction: rearranging the exiting segments in physical memory.

w Compaction is costly.

¢ Stop running process.

¢ Copy data to somewhere.

¢ Change segment register value.

p 1000 ways to solve it

w None of them are the “best”

p Added to creating, terminating, and context switches

AOS@UC 13Segmentation



Memory Compaction
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p This lecture slide set is used in AOS course at University of Cantabria. Was initially developed 

for Operating System course in Computer Science Dept. at Hanyang University. This lecture 

slide set is for OSTEP book  written by Remzi and Andrea Arpaci-Dusseau (at University of 

Wisconsin)
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