
13. The Abstraction: Address Space
Operating System: Three Easy Pieces

1AOS@UC

Memory Virtualization

p What is memory virtualization?

w OS virtualizes its physical memory.

w OS provides an illusion memory space per each process.

w It seems to be seen like each process uses the whole memory .

AOS@UC 2

Benefit of Memory Virtualization

p Ease of use in programming

p Memory efficiency in terms of time and space

p The guarantee of isolation for processes as well as OS

w Protection from errant accesses of other processes

AOS@UC 3

OS in The Early System

p Load only one process in memory.

w Poor utilization and efficiency

0KB

64KB

max

Operating System
(code, data, etc.)

Current
Program

(code, data, etc.)

Physical Memory

AOS@UC 4

Perhaps in the
future too?: Uni-
kernels)

Multiprogramming and Time Sharing

p Load multiple processes in memory.

w Execute one for a short while.

w Switch processes between them in memory.

w Increase utilization and efficiency.

p Cause an important protection issue.

w Errant memory accesses from other processes

0KB

64KB

Operating System
(code, data, etc.)

Process C
(code, data, etc.)

Free

Process B
(code, data, etc.)

Free

Process A
(code, data, etc.)

Physical Memory

Free

Free

128KB

192KB

256KB

320KB

384KB

448KB

512KB

AOS@UC 5

Address Space

p OS creates an abstraction of physical memory.

w The address space contains all about a running process.

w That is consist of program code, heap, stack and etc.

0KB
Program Code

(free)

1KB

2KB

15KB

16KB

Heap

Stack

Address Space

AOS@UC 6

Address Space(Cont.)

p Program

w Where instructions and static data live

p Heap

w Dynamically allocate memory.

¢ malloc/free in C language

¢ new/delete in object-oriented language

w Implicitly handled in (memory) managed languages

p Stack

w Store return addresses or values.

w Contain local variables arguments to routines.

w Implicitly handled in HLL

Program

(free)

Heap

Stack

Address Space

AOS@UC 7

Virtual Address

p Every address in a running program is virtual.

w OS provides the “mechanism” to translate the virtual address to physical address

w HW assists to make such translation “painless”

#include <stdio.h>
#include <stdlib.h>
int global=1;
int main(int argc, char *argv[])
{

int x = 3;
printf("location of code : %p\n", (void *) main);
printf("location of data : %p\n", (void *) &global);
printf("location of heap : %p\n", (void *) malloc(1));
printf("location of stack : %p\n", (void *) &x);

return x;
}

A simple program that prints out addresses

AOS@UC 8

Virtual Address(Cont.)

p The output in 64-bit Linux machine

location of code : 0x40057d
location of data : 0x401010
location of heap : 0xcf2010
location of stack : 0x7fff9ca45fcc

(free)

Code
(Text)

Stack

stack

heap

Address Space

Data

Heap

0x400000

0xcf2000

0x7fff9ca49000

0x401000

0xd13000

0x7fff9ca28000

AOS@UC 9

Goals of VM

p Transparency

w VM should be invisible to running program

p Efficiency

w Minimize overhead in terms of speed and space

p Protection

w Isolate processes (and OS itself) [but allowing selective “communication”]

AOS@UC 10

p Disclaimer: Disclaimer: This lecture slide set is used in AOS course at University of

Cantabria. Was initially developed for Operating System course in Computer Science

Dept. at Hanyang University. This lecture slide set is for OSTEP book written by Remzi

and Andrea Arpaci-Dusseau (at University of Wisconsin)

AOS@UC 11

