10. Multiprocessor Scheduling (Advanced)

Operating System: Three Easy Pieces

- The rise of the multicore processor is the source of multiprocessorscheduling proliferation.
 - **Multicore**: Multiple CPU cores are packed onto a single chip.
- Adding more CPUs <u>does not</u> make that single application run faster.
 → You'll have to rewrite application to run in parallel, using **threads**.

How to schedule jobs on Multiple CPUs?

Single CPU with cache

By keeping data in cache, the system can make slow memory appear to be a fast one

Cache coherence

- **D** Coherence of shared resource data stored in multiple caches.
- 0. Two CPUs with caches sharing memory

1. CPU0 reads a data at address 1.

2. *D* is updated and CPU1 is scheduled.

3. CPU1 re-reads the value at address A

CPU1 gets the old value *D* instead of the correct value *D'*.

- **Bus snooping**
 - Each cache pays attention to memory updates by **observing the bus**.
 - When a CPU sees an update for a data item it holds in its cache, it will notice the change and either <u>invalidate</u> its copy or <u>update</u> it.

When accessing shared data across CPUs, mutual exclusion primitives should likely be used to <u>guarantee correctness</u>.

```
1
         typedef struct Node t {
2
                   int value;
                   struct Node t *next;
3
4
         } Node t;
5
6
         int List Pop() {
                   Node t *tmp = head; // remember old head ...
7
                   int value = head->value; // ... and its value
8
                   head = head->next;
                                               // advance head to next pointer
9
10
                                               // free old head
                   free(tmp);
                                                // return value at head
11
                   return value;
12
```

Simple List Delete Code

Don't forget synchronization (Cont.)

Solution

```
pthread mtuex t m;
1
2
         typedef struct Node t {
3
                   int value;
                   struct Node t *next;
4
5
         } Node t;
6
7
         int List Pop() {
8
                   lock(&m)
9
                   Node t *tmp = head; // remember old head ...
                   int value = head->value; // ... and its value
10
                   head = head->next;
                                                // advance head to next pointer
11
12
                   free(tmp);
                                                // free old head
13
                   unlock(&m)
14
                   return value;
                                                 // return value at head
15
          }
```

Simple List Delete Code with lock

Cache Affinity

- **•** Keep a process on the same CPU if possible
 - A process builds up a fair bit of state in the cache of a CPU.
 - The next time the process run, it will run faster if some of its state is *already present* in the cache on that CPU.

A multiprocessor scheduler should consider cache affinity when making its scheduling decision.

Single queue Multiprocessor Scheduling (SQMS)

- **D** Put all jobs that need to be scheduled into a single queue.
 - Each CPU simply picks the next job from the globally shared queue.
 - Cons:
 - Some form of **locking** must be used → Lack of scalability
 - Cache affinity
 - Example:

Queue
$$\rightarrow A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow NULL$$

• Possible job scheduler across CPUs:

Scheduling Example with Cache affinity

- <u>Preserving affinity</u> for most
 - Jobs A through D are not moved across processors.
 - Only job e Migrating from CPU to CPU.
- Implementing such a scheme can be **complex**.

Multi-queue Multiprocessor Scheduling (MQMS)

- **D** MQMS consists of multiple scheduling queues.
 - Each queue will follow a particular scheduling discipline.
 - When a job enters the system, it is placed on exactly one scheduling queue.
 - Avoid the problems of information sharing and synchronization.

With round robin, the system might produce a schedule that looks like this:

MQMS provides more scalability and cache affinity.

• After job C in Q0 finishes:

• After job A in Q0 finishes:

How to deal with load imbalance?

- **D** The answer is to move jobs (**Migration**).
 - Example:

How to deal with load imbalance? (Cont.)

• A more tricky case:

$$Q0 \longrightarrow A \qquad Q1 \longrightarrow B \longrightarrow D$$

- A possible migration pattern:
 - Keep switching jobs

Work Stealing

- Move jobs between queues
 - Implementation:
 - A source queue that is low on jobs is picked.
 - The source queue occasionally peeks at another target queue.
 - If the target queue is <u>fuller than</u> the source queue, the source will "steal" one or more jobs from the target queue.
 - Cons:
 - *High overhead* and trouble *scaling*

Linux Multiprocessor Schedulers

O(1)

- A Priority-based scheduler
- Use Multiple queues (similar to MLFQ)
- Change a process's priority over time
- Schedule those with highest priority
- Interactivity is a particular focus
- Completely Fair Scheduler (CFS) (current mainline)
 - Deterministic proportional-share approach
 - Based on Staircase Deadline (fairness is the focus)
 - Red-black tree for scalability

BF Scheduler (BFS) (Not in the mainline)

- A single queue approach
- Proportional-share
- Based on Earliest Eligible Virtual Deadline First (EEVDF)
- Focus on interactive (not scale well with cores). Superseded by MuQSS to fix that

<u>The battle of schedulers</u>: Kolivas (SD) vs Molnar (CFS)

"And you have to realize that there are not very many things that have a ged as well as the scheduler. Which is just another proof that scheduling is easy."

Linus Torvalds, 2001 [43]

Scheduling is not easy!, E.g: "The Linux Scheduler: a Decade of Wasted Cores" http://www.ece.ubc.ca/~sasha/papers/eurosys16final29.pdf ■ SMT, Frequency scaling,...

D Complex caches (Non-uniform cache architectures)

Multi-socket is hard

Multi-die is even harder

Big-little (P/E), etc...

Aside: real systems are really nasty

	Tengenz can have g (ab), in (ib) of a (ab) suffices
	<pre>vpuente@compute-gpu-0:~\$ sudo numactlhardware</pre>
	available: 8 nodes (0-7)
	node 0 cpus: 0 1 2 3 32 33 34 35
	node 0 size: 32097 MB
	node Ø free: 30877 MB
	node 1 cpus: 4 5 6 7 36 37 38 39
	node 1 size: 16125 MB
Ryzen 9 3950X Core-to-Core Latency	node 1 free: 15219 MB
C->C (ns) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	node 2 cpus: 8 9 10 11 40 41 42 43
0 X 67 313 313 309 309 313 314 835 83.2 86.9 87.7 83.7 83.8 84.0 84.0 84.3 84.4 83.1 83.1 86.4 86.3 85.6 85.5 82.6 82.5 83.1 83.1 88.8 88.9 85.7 85.6 1 67 X 310 310 30.7 30.8 312 312 82.7 82.8 86.0 86.1 83.9 83.8 83.9 83.9 84.3 84.0 83.1 83.0 86.3 86.3 85.4 85.5 82.5 82.5 83.1 83.1 88.8 88.8 85.7 85.6 1 67 X 310 310 30.7 30.8 312 312 82.7 82.8 86.0 86.1 83.9 83.8 83.9 83.9 84.3 84.0 83.1 84.0 83.1 84.3 85.4 85.5 82.5 82.5 83.1 83.1 88.8 88.9 85.7 85.6 1 83.9 83.8 83.9 83.9 83.9 84.3 84.0 83.1 83.0 86.3 86.3 85.4 85.5 82.5 82.5 83.1 83.1 88.8 88.9 85.7 85.6 18.0 85.7 85.7 85.6 18.0 85.7 85.7 85.7 85.7 85.7 85.7 85.	node 2 size: 16125 MB
2 31.3 31.0 X 6.8 30.9 31.0 31.8 31.8 855 854 88.9 89.0 85.8 85.8 86.0 85.9 82.1 82.1 82.3 82.3 85.5 85.5 83.4 83.5 81.7 81.7 82.3 82.3 86.0 86.0 83.5 83.6 83.5 83.6 85.9 82.1 82.3 82.3 85.5 85.5 83.4 83.5 81.7 81.7 82.3 82.3 86.0 86.0 83.5 83.6 83.5 83.6 85.9 82.1 82.3 82.3 85.5 85.5 83.4 83.5 81.7 81.7 82.3 82.3 86.0 86.0 83.5 83.6 83.5 83.6 85.9 82.1 82.3 82.3 85.5 85.5 83.4 83.5 81.7 81.7 82.3 82.3 86.0 86.0 83.5 83.6 83.5 83.6 85.9 82.1 82.3 82.3 85.5 85.5 83.4 83.5 81.7 81.7 82.3 82.3 86.0 86.0 83.5 83.6 83.5 83.6 85.9 82.1 82.3 82.3 85.5 85.5 83.4 83.5 81.7 81.7 82.3 82.3 86.0 86.0 83.5 83.6 85.9 82.1 82.3 82.3 85.5 85.5 83.4 83.5 81.7 81.7 82.3 82.3 85.6 85.9 82.1 82.3 82.3 85.5 85.5 83.4 83.5 81.7 81.7 82.3 82.3 85.6 85.9 82.1 82.3 82.3 85.5 85.5 83.4 83.5 81.7 81.7 82.3 82.3 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85	node 2 free: 14937 MB
3 31.3 31.0 6.8 X 30.9 30.9 31.6 31.6 574 64.6 66.7 66.4 57.7 50.0 60.0 62.1 52.1 52.5 52.5 52.5 55.5 55.5 55.5 5	node 3 cnus: 12 13 14 15 AA $A5$ $A6$ $A7$
5 30.9 30.8 31.0 30.5 30.5 30.6 82.1 82.6 82.5 82.6 82.1 82.0 83.4 86.5 86.5 83.4 82.7 82.8 83.4 83.6 86.2 83.5 83.5 6 31.3 31.2 31.8 30.5 30.5 X 6.9 83.0 83.1 85.6 85.7 82.5 82.6 82.6 85.5 85.8 86.1 86.3 89.3 87.2 87.2 85.5 85.6 86.1 86.3 89.3 87.2 87.2 85.5 86.2 86.3 87.2 87.2 85.5 86.5 88.4 82.7 82.6 82.6 82.6 85.5 85.5 85.4 86.3 89.3 87.2 87.2 85.5 85.5 86.2 86.3 87.2 87.2 85.5 85.5 86.2 86.3 89.4 87.2 87.2 85.5 85.5 86.2 86.3 89.4 87.2 87.2 85.5 85.5 86.2 86.3 88.4 87.2 87.2 85.5 86.4 </th <th>node 3 cjus. 12 13 14 13 44 43 40 47 r_{1}</th>	node 3 cjus. 12 13 14 13 44 43 40 47 r_{1}
7 31.4 31.2 31.8 30.6 60.9 X 83.0 83.2 85.6 85.7 8	node 3 Size. 6409 MP
9 83.2 82.8 85.4 84.8 82.1 82.1 83.1 83.2 6.9 X 31.7 31.6 30.9 30.9 31.2 31.2 84.3 84.0 83.1 83.1 86.3 86.3 85.7 85.4 82.5 82.5 83.1 83.1 88.9 88.9 85.6 85.6 85.9 85.9 85.0 85.6 85.6 31.7 31.7 X 6.9 31.1 31.2 31.9 31.8 82.1 82.1 82.0 82.5 82.4 85.5 85.5 83.4 83.4 81.8 81.8 82.3 82.3 86.0 86.0 83.5 83.5 85.7 85.4 83.4 81.8 81.8 82.3 82.3 86.0 86.0 83.5 83.5 85.7 85.4 83.4 81.8 81.8 82.3 82.3 85.7 85.4 83.4 81.8 81.8 82.3 82.3 85.7 85.4 85.5 85.5 83.4 83.4 81.8 81.8 82.3 82.3 85.7 85.5 83.5 85.5 83.4 83.4 85.5 85.5 83.4 83.4 85.5 85.5 83.4 83.4 85.5 85.5 83.4 83.4 85.5 85.5 83.4 83.4 85.5 85.5 83.4 83.4 85.5 85.5 83.5 85.5 83.4 83.4 85.5 85.5 83.4 83.4 85.5 85.5 85.5 83.4 83.4 85.5 85.5 85.5 83.4 83.4 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11 87.7 86.1 89.0 88.4 85.2 84.8 85.7 85.6 31.6 31.6 6.9 X 31.2 31.2 31.9 31.9 82.1 82.1 82.3 82.3 85.5 85.5 83.6 83.5 81.8 81.8 82.3 82.3 86.0 86.0 83.5 83.5 83.5 83.6 83.5 83.5 83.6 83.5 83.5 83.5 83.5 83.5 83.5 83.5 83.5	node 4 cpus: 10 17 18 19 48 49 50 51
13 83.8 83.8 85.8 85.7 82.5 82.5 82.5 82.6 30.9 30.9 31.2 31.2 6.9 X 30.6 30.6 82.0 82.4 83.7 86.5 86.5 83.5 83.4 82.7 82.7 83.4 83.4 86.1 86.1 86.1 83.5 83.5 85.7 82.6 96.0 92.5 92.5 92.5 92.6 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7	
15 84.0 83.9 86.0 82.6 82.6 81.2 81.2 81.2 81.7 8	node 4 free: 31868 MB
16 84.3 84.3 82.1 <	node 5 cpus: 20 21 22 23 52 53 54 55
13 83.1 83.1 82.3 82.4 83.4 83.4 83.1 83.1 83.4 83.1 <	node 5 size: 16125 MB
20 864 863 855 855 865 865 89.3 89.3 863 863 85.5 855 864 865 89.3 89.3 82.1 82.1 82.1 82.1 82.1 82.4 82.4 7.1 81.9 81.9 88.3 88.3 88.6 88.6 92.2 92.3 90.0 90.1 21 863 863 85.5 85.5 865 86.5 89.3 89.3 86.3 85.5 85.5 86.6 86.5 89.3 89.3 82.1 82.1 82.4 82.4 7.1 X 81.9 32.0 88.3 88.3 88.6 88.6 92.5 92.4 90.0 90.1	node 5 free: 10104 MB
22 85.6 85.4 83.4 83.5 83.4 83.5 87.2 87.2 85.3 85.7 83.4 83.6 83.3 83.5 87.2 87.2 32.6 32.5 33.0 31.9 31.9 31.9 32 7.2 86.2 86.1 86.4 86.4 90.0 90.1 87.5 87.5 85.5 85.5 85.5 85.5 85.5 85.5	node 6 cpus: 24 25 26 27 56 57 58 59
24 82.6 82.5 81.7 81.8 82.8 82.7 85.5 85.5 82.5 81.8 81.8 82.8 82.7 85.5 85.5 84.9 84.9 85.0 85.0 88.3 88.3 86.2 86.2 X 7.1 32.9 32.9 32.1 32.1 32.6 32.6	node 6 size: 16104 MB
25 82.5 82.4 82.4 82.5 83.4 82.5 83.4 81.8 82.6 82.7 85.5 84.9 84.8 85.0 85.1 86.2 71 X 32.9 32.1 32	node 6 free: 8043 MB
27 83.1 83.1 82.3 83.4 83.3 86.3 86.2 83.1 82.3 83.4 83.4 86.2 86.2 85.1 85.1 85.4 86.6 86.4 86.4 86.4 82.9 7.1 X 32.6 32.5 33.1 33.1 28 88.8 86.0 86.0 85.7 85.8 88.9 88.0 82.9 86.0 86.0 86.6 88.6 86.4 86.4 82.9 32.9 7.1 X 32.6 32.5 33.1 33.1 28 88.8 80.6 86.0 86.7 85.4 88.6 88.6 86.4	node 7 cpus: 28 29 30 31 60 61 62 63
29 88.9 88.6 85.7 85.7 85.7 85.7 85.7 85.7 85.7 85.7 86.6 88.6 88.9 82.4 90.1 90.1 32.1 32.5 32.5 7.2 X 31.9 32.0 30 85.7 85.7 85.7 85.7 85.7 85.7 87.2 86.1 86.1 86.5 86.6 89.0 90.0 90.7 87.6 32.6 32.1 33.1 31.9 31.9 32.0	node 7 size: 8060 MB
31 85.6 85.6 83.6 83.4 83.5 83.5 87.2 87.2 85.7 85.6 83.5 83.5 83.5 83.5 87.2 87.2 86.2 86.2 86.6 86.5 90.1 90.1 87.5 87.6 32.6 32.6 33.1 33.1 32.0 32.0 7.2 X	node 7 free: 7271 MB
	node distances:
	node 0 1 2 3 4 5 6 7
	0: 10 16 16 16 32 32 32 32
	1: 16 10 16 16 32 32 32 32
	2. 16 16 10 16 32 32 32 32
	3° 16 16 16 10 32 32 32 32
	$4 \cdot 37 \ 37 \ 37 \ 37 \ 37 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 1$
	$5 \cdot 32 \cdot 32 \cdot 32 \cdot 32 \cdot 16 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10$
	6, 22, 22, 22, 22, 16, 16, 10, 10, 10
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	7: 52 52 52 52 10 10 10 10

Aaside: Nest Scheduler

- https://www.phoronix.com/news/Nest-Linux-Scheduling-Warm-Core
- Idea: Form a primary and secondary nest to choose the core to run
 - Locality, prefer warm-cores (higher frequency)

Aside: Other Solutions

- **D** Strawman solution:
 - taskset -p <range-processors> your_task

- Hardware assistance?
 - V.gr., Intel Thread Director (Alder Lake + windows 11, Linux 5.18)
 - https://www.anandtech.com/show/16881/a-deep-dive-into-intels-alder-lake
 -microarchitectures/2

 Disclaimer: Disclaimer: This lecture slide set is used in AOS course at University of Cantabria. Was initially developed for Operating System course in Computer Science
 Dept. at Hanyang University. This lecture slide set is for OSTEP book written by Remzi and Andrea Arpaci-Dusseau (at University of Wisconsin)