
10. Multiprocessor Scheduling
(Advanced)

Operating System: Three Easy Pieces

AOS@UC 1

Multiprocessor Scheduling

p The rise of the multicore processor is the source of multiprocessor-

scheduling proliferation.

w Multicore: Multiple CPU cores are packed onto a single chip.

p Adding more CPUs does not make that single application run faster.

à You’ll have to rewrite application to run in parallel, using threads.

How to schedule jobs on Multiple CPUs?

AOS@UC 2

Single CPU with cache

CPU

Cache

Memory

By keeping data in cache, the system can make slow memory
appear to be a fast one

• Small, fast memories
• Hold copies of popular data that is found

in the main memory.
• Utilize temporal and spatial locality

• Holds all of the data
• Access to main memory is slower than cache.

Cache

Main Memory

AOS@UC 3

Cache coherence

p Coherence of shared resource data stored in multiple caches.

Bus

𝐷 Memory

0 1 2 3

0. Two CPUs with caches sharing memory 1. CPU0 reads a data at address 1.

CPU 0

C
ac
h
e

CPU 1

C
ac
h
e

Bus

𝐷 Memory

0 1 2 3

CPU 0

C
ac
h
e

CPU 1

C
ac
h
e

𝐷

AOS@UC 4

Cache coherence (Cont.)

Bus

𝐷 Memory

0 1 2 3

2. 𝐷 is updated and CPU1 is scheduled. 3. CPU1 re-reads the value at address A

CPU 0

C
ac
h
e

CPU 1

C
ac
h
e

Bus

𝐷 Memory

0 1 2 3

CPU 0

C
ac
h
e

CPU 1

C
ac
h
e

𝐷′𝐷′ 𝐷

CPU1 gets the old value 𝑫
instead of the correct value 𝑫′.

AOS@UC 5

Cache coherence solution

p Bus snooping

w Each cache pays attention to memory updates by observing the bus.

w When a CPU sees an update for a data item it holds in its cache, it will

notice the change and either invalidate its copy or update it.

AOS@UC 6

Don’t forget synchronization

p When accessing shared data across CPUs, mutual exclusion primitives

should likely be used to guarantee correctness.

1 typedef struct __Node_t {
2 int value;
3 struct __Node_t *next;
4 } Node_t;
5
6 int List_Pop() {
7 Node_t *tmp = head; // remember old head ...
8 int value = head->value; // ... and its value
9 head = head->next; // advance head to next pointer
10 free(tmp); // free old head
11 return value; // return value at head
12 }

Simple List Delete Code

AOS@UC 7

Don’t forget synchronization (Cont.)

p Solution

1 pthread_mtuex_t m;
2 typedef struct __Node_t {
3 int value;
4 struct __Node_t *next;
5 } Node_t;
6
7 int List_Pop() {
8 lock(&m)
9 Node_t *tmp = head; // remember old head ...
10 int value = head->value; // ... and its value
11 head = head->next; // advance head to next pointer
12 free(tmp); // free old head
13 unlock(&m)
14 return value; // return value at head
15 }

Simple List Delete Code with lock

AOS@UC 8

Cache Affinity

p Keep a process on the same CPU if possible

w A process builds up a fair bit of state in the cache of a CPU.

w The next time the process run, it will run faster if some of its state is

already present in the cache on that CPU.

A multiprocessor scheduler should consider cache affinity
when making its scheduling decision.

AOS@UC 9

Single queue Multiprocessor Scheduling (SQMS)

p Put all jobs that need to be scheduled into a single queue.

w Each CPU simply picks the next job from the globally shared queue.

w Cons:

¢ Some form of locking must be used à Lack of scalability

¢ Cache affinity

¢ Example:

¢ Possible job scheduler across CPUs:

Queue A NULLB C D E

CPU0 A E D C B

CPU1 B A E D C

CPU2 C B A E D

CPU3 D C B A E

… (repeat) …

… (repeat) …

… (repeat) …

… (repeat) …

AOS@UC 10

Scheduling Example with Cache affinity

w Preserving affinity for most

¢ Jobs A through D are not moved across processors.

¢ Only job e Migrating from CPU to CPU.

w Implementing such a scheme can be complex.

Queue A NULLB C D E

CPU0 A E A A A

CPU1 B B E B B

CPU2 C C C E C

CPU3 D D D D E

… (repeat) …

… (repeat) …

… (repeat) …

… (repeat) …

AOS@UC 11

Multi-queue Multiprocessor Scheduling (MQMS)

p MQMS consists of multiple scheduling queues.

w Each queue will follow a particular scheduling discipline.

w When a job enters the system, it is placed on exactly one scheduling

queue.

w Avoid the problems of information sharing and synchronization.

AOS@UC 12

MQMS Example

p With round robin, the system might produce a schedule that looks

like this:

Q0 A B D

CPU0

CPU1

Q1

A A C C A A C C A A C C

B B D D B B D D B B D D

MQMS provides more scalability and cache affinity.

…

…

C

AOS@UC 13

Load Imbalance issue of MQMS

p After job C in Q0 finishes:

p After job A in Q0 finishes:

Q0 A B D

CPU0

CPU1

Q1

A A A A A A A A A A A A

B B D D B B D D B B D D

…

…

A gets twice as much CPU as B and D.

Q0 B D

CPU0

CPU1

Q1

B B D D B B D D B B D D

…

…

CPU0 will be left idle!

AOS@UC 14

How to deal with load imbalance?

p The answer is to move jobs (Migration).

w Example:

Q0 B DQ1

Q0 BD Q1

Q0 B DQ1

Or

The OS moves one of B or D to CPU 0

AOS@UC 15

How to deal with load imbalance? (Cont.)

p A more tricky case:

p A possible migration pattern:

w Keep switching jobs

Q0 B DQ1A

CPU0

CPU1

A A A A B A B A B B B B

B D B D D D D D A D A D

…

…

Migrate B to CPU0 Migrate A to CPU1

AOS@UC 16

Work Stealing

p Move jobs between queues

w Implementation:

¢ A source queue that is low on jobs is picked.

¢ The source queue occasionally peeks at another target queue.

¢ If the target queue is fuller than the source queue, the source will “steal” one

or more jobs from the target queue.

w Cons:

¢ High overhead and trouble scaling

AOS@UC 17

Linux Multiprocessor Schedulers

p O(1)

w A Priority-based scheduler

w Use Multiple queues (similar to MLFQ)

w Change a process’s priority over time

w Schedule those with highest priority

w Interactivity is a particular focus

p Completely Fair Scheduler (CFS) (current mainline)

w Deterministic proportional-share approach

w Based on Staircase Deadline (fairness is the focus)

w Red-black tree for scalability

AOS@UC 18

Linux Multiprocessor Schedulers (Cont.)

p BF Scheduler (BFS) (Not in the mainline)

w A single queue approach

w Proportional-share

w Based on Earliest Eligible Virtual Deadline First (EEVDF)

w Focus on interactive (not scale well with cores). Superseded by MuQSS to

fix that

p The battle of schedulers : Kolivas (SD) vs Molnar (CFS)

AOS@UC 19

http://artipc10.vub.ac.be/wordpress/2007/04/28/linux-kernel-the-battle-of-the-cpu-schedulers/

“And you have to realize that there are not very many things that have a

ged as well as the scheduler. Which is just another proof that scheduling

is easy.”

Linus Torvalds, 2001 [43]

AOS@UC

Scheduling is not easy!, E.g:
“The Linux Scheduler: a Decade of Wasted Cores ”
http://www.ece.ubc.ca/~sasha/papers/eurosys16-
final29.pdf

20

Aside: Current hardware is hard to handle by the scheduler

p SMT, Frequency scaling,…

p Complex caches (Non-uniform cache architectures)

p Multi-socket is hard

p Multi-die is even harder

p Big-little (P/E), etc…

AOS@UC 21

Aside: real systems are really nasty

AOS@UC 22

Aaside: Nest Scheduler

p https://www.phoronix.com/news/Nest-Linux-Scheduling-Warm-Core

p Idea: Form a primary and secondary nest to choose the core to run

w Locality, prefer warm-cores (higher frequency)

AOS@UC 23

https://www.phoronix.com/news/Nest-Linux-Scheduling-Warm-Core

Aside: Other Solutions

p Strawman solution:

w taskset –p <range-processors> your_task

p Hardware assistance?

p V.gr., Intel Thread Director (Alder Lake + windows 11, Linux 5.18)

p https://www.anandtech.com/show/16881/a-deep-dive-into-intels-alder-lake

-microarchitectures/2

AOS@UC 24

p Disclaimer: Disclaimer: This lecture slide set is used in AOS course at University of

Cantabria. Was initially developed for Operating System course in Computer Science

Dept. at Hanyang University. This lecture slide set is for OSTEP book written by Remzi

and Andrea Arpaci-Dusseau (at University of Wisconsin)

AOS@UC 25

