9: Scheduling: Proportional Share

Operating System: Three Easy Pieces

AOS@UC 1

Proportional Share Scheduler

o Fair-share scheduler

+ Guarantee that each job obtain a certain percentage of CPU time.

+ Not optimized for turnaround or response time

AOS@UC 2

Basic Concept

o Tickets

+ Represent the share of a resource that a process should receive

+ The percent of tickets represents its share of the system resource in

question.

o Example

+ There are two processes, A and B.

o Process A has 75 tickets = receive 75% of the CPU
o Process B has 25 tickets = receive 25% of the CPU

AOS@UC 3

Lottery scheduling

o The scheduler picks a winning ticket.

¢ Load the state of that winning process and runs it.

o Example

¢ There are 100 tickets

o Process A has 75 tickets: 0 ~ 74
o Process B has 25 tickets: 75 ~ 99

Scheduler’s winning tickets: 63 85 70 39 76 17 29 41 36 39 10 99 68 83 63
Resulting scheduler: A B A A B A A A A A A B A B A

The longer these two jobs compete,
The more likely they are to achieve the desired percentages.

AOS@UC 4

The beauty of randomness (in scheduling)

o Deals easily with corner-case situations

¢ Others should have a lot of “ifs” to prevent them

o Little state required

+ No need to track the details of each process in the past

o Really fast

+ More speed - more pseudo-randomness (or HW assistance)

AOS@UC 5

Ticket Mechanisms

o Ticket currency

+ A user allocates tickets among their own jobs in whatever currency they

would like.
+ The system converts the currency into the correct global value.

+ Example
o There are 200 tickets (Global currency)
o Process A has 100 tickets
o Process B has 100 tickets

User A > 500 (As currency) to A1 = 50 (global currency)
> 500 (A's currency) to A2 - 50 (global currency)

User B > 70 (B's currency) to B1 - 700 (global currency)

AOS@UC 6

Ticket Mechanisms (Cont.)

o Ticket transfer

* A process can temporarily hand off /ts tickets to another process.

o Ticket inflation

+ A process can temporarily raise or lower the number of tickets is owns.

+ |f any one process needs more CPU time, it can boost its tickets.

AOS@UC 7

Implementation

o Example: There are three processes, A, B, and C.

+ Keep the processes in a list:

Job:C

Job:A
Tix250 /> NULL

head Tix:100

1 // counter: used to track if we’ve found the winner yet
2 int counter = 0;

3

4 // winner: use some call to a random number generator to
5 // get a value, between 0 and the total # of tickets

o int winner = getrandom (0, totaltickets);

9

8 // current: use this to walk through the list of Jjobs

9 node t *current = head;

10

11 // loop until the sum of ticket wvalues is > the winner
12 while (current) {

13 counter = counter + current->tickets;

14 if (counter > winner)

15 break; // found the winner

16 current = current->next;

17 }

18 // "current’ 1is the winner: schedule it...

https://stackoverflow.com/questions/2509679/how—-to—generate—a-random—integer—number—fro
AOS@UC m-within—a-range 8

Implementation (Cont.)

o U: unfairness metric

+ The time the first job completes divided by the time that the second job

completes.

o Example:

¢ There are two jobs, each jobs has runtime 10.
o First job finishes at time 10

o Second job finishes at time 20

10
¢ U=—=0.5
20

+ U will be close to 1 when both jobs finish at nearly the same time.

AOS@UC 9

Lottery Fairness Study

o There are two jobs.

¢ Each jobs has the same number of tickets (100).

1.0 oo -ommoes oo e
0.8-
0.6 -

0.4 4

Unfairness (Average)

0.2+

0.0 T T 1
1 10 100 1000
Job Length

[When the job length is not very long,

average unfairness can be quite severe.

AOS@UC

10

Stride Scheduling (deterministic Fair-share scheduler)

o Stride of each process

+ Defined as (one large number) / (the number of tickets of the process)
+ Example: one large number = 10,000
o Process A has 100 tickets = stride of A is 100

o Process B has 50 tickets = stride of B is 200
o Process C has 250 tickets = stride of C is 40

o A process runs, increment a counter(=pass value) for it by its stride.

* Pick the process to run that has the lowest pass value

current = remove min (queue); // pick client with minimum pass
schedule (current) ; // use resource for gquantum
current->pass += current->stride; // compute next pass using stride
insert (queue, current); // put back into the queue

A pseudo code implementation

AOS@UC 11

Stride Scheduling Example

AOS@UC

Pass(A)
(stride=100)

0
100
100
100
100
100
200
200
200

Pass(b) Pass(C) Who Runs?
(stride=200) (stride=40)
0 0 A
0 0
200 0 C
200 40 C
200 80 C
200 120 A
200 120 C
200 160 C
200 200

/

If new job enters with pass value 0,
It will monopolize the CPU!:
Stride scheduler requires global state (in
contrast with lottery)

12

Linux Completely Fair Scheduler (CFS)

o 5% overall datacenter CPU time wasted in scheduler

o Focus on fairness and minimizing scheduling overhead

AOS@UC

*

*

Keep track of the (virtual) runtime of each process
At scheduling time, chooses the process with the lowest virtual run time
Time slice is variable: according number of ready to run processes (from

sched latency (48 ms) for 1 process to min_granularity (6 ms) for

any number of processes
ABCDABCD A B A

0 50 100 150 200 250
Time

13

Niceness and Weights

o Time slice and virtual runtime of the process can be affected by

weights (niceness)

weilght,
—1 .
}:ZZOWGlghti

time_sliceg = -sched_latency

o Typically, from -20 to 19
o By default, O

static const int prio_to_weight[40] = {
/* =20 =/ 88761, 71755, 56483, 46273, 36291,
/* =15 %/ 29154, 23254, 18705, 14949, 11916,
/+x =10 =/ 9548, 7620, 6100, 4904, 3906,
/x -5 =/ 3121, 2501, 1991, 1586, 1277,
/ * 0 x/ 1024, 820, 655, 526, 423,
/ * 5 %/ 3395, 212y 215, 1572 137,
fde: TO *4 110, 87, 10, 56; 45,
f 15 */ 36; 29; 23 18, 155

}i

AOS@UC 14

o Two process: A (niceness -5) B (niceness 0)

o weight,=3121, weightB=1024

O time sliceA=3/4 (36 ms), time sliceB=1/4 (12 ms) of
sched latency (48 ms)

o Also, virtual runtime changes with weights

_ : weighty
vruntime; = vruntime; +

. - runtime;
weight,;

o A accumulates virtual runtime at 1/3 of B

AOS@UC 15

Linux Completely Fair Scheduler (CFS)

o Minimal scheduler overhead
+ Data structures should be scalable: No lists
¢ CFS uses a balanced tree (red-black tree) of the ready-to-run processes

¢+ O(log n) insertions and searches

/0\/@\ Q Q
o Many more details @ @

+ 1/0 is handled altering the vruntime of the awaken process to the minimum value in the
tree

¢ Heuristics for multi-CPU scheduling (cache affinity, frequency, core complexity...)

¢ Cooperative multi-process schedule

AOS@UC 16

This lecture slide set is used in AOS course at University of Cantabria. Was initially developed for

Operating System course in Computer Science Dept. at Hanyang University. This lecture slide set is

for OSTEP book written by Remzi and Andrea Arpaci-Dusseau (at University of Wisconsin)

AOS@UC 17

