
9: Scheduling: Proportional Share
Operating System: Three Easy Pieces

1AOS@UC

Proportional Share Scheduler

p Fair-share scheduler

w Guarantee that each job obtain a certain percentage of CPU time.

w Not optimized for turnaround or response time

AOS@UC 2

Basic Concept

p Tickets

w Represent the share of a resource that a process should receive

w The percent of tickets represents its share of the system resource in

question.

p Example

w There are two processes, A and B.

¢ Process A has 75 tickets à receive 75% of the CPU

¢ Process B has 25 tickets à receive 25% of the CPU

AOS@UC 3

Lottery scheduling

p The scheduler picks a winning ticket.

w Load the state of that winning process and runs it.

p Example

w There are 100 tickets

¢ Process A has 75 tickets: 0 ~ 74

¢ Process B has 25 tickets: 75 ~ 99

Scheduler’s winning tickets: 63 85 70 39 76 17 29 41 36 39 10 99 68 83 63

Resulting scheduler: A B A A B B BA A A A A A A A

The longer these two jobs compete,
The more likely they are to achieve the desired percentages.

AOS@UC 4

The beauty of randomness (in scheduling)

p Deals easily with corner-case situations

w Others should have a lot of “ifs” to prevent them

p Little state required

w No need to track the details of each process in the past

p Really fast

w More speed à more pseudo-randomness (or HW assistance)

AOS@UC 5

Ticket Mechanisms

p Ticket currency

w A user allocates tickets among their own jobs in whatever currency they

would like.

w The system converts the currency into the correct global value.

w Example

¢ There are 200 tickets (Global currency)

¢ Process A has 100 tickets

¢ Process B has 100 tickets

User A à 500 (A’s currency) to A1 à 50 (global currency)
à 500 (A’s currency) to A2 à 50 (global currency)

User B à 10 (B’s currency) to B1 à 100 (global currency)

AOS@UC 6

Ticket Mechanisms (Cont.)

p Ticket transfer

w A process can temporarily hand off its tickets to another process.

p Ticket inflation

w A process can temporarily raise or lower the number of tickets is owns.

w If any one process needs more CPU time, it can boost its tickets.

AOS@UC 7

Implementation

p Example: There are three processes, A, B, and C.

w Keep the processes in a list:

head
Job:A
Tix:100

Job:B
Tix:50

Job:C
Tix:250 NULL

1 // counter: used to track if we’ve found the winner yet
2 int counter = 0;
3
4 // winner: use some call to a random number generator to
5 // get a value, between 0 and the total # of tickets
6 int winner = getrandom(0, totaltickets);
7
8 // current: use this to walk through the list of jobs
9 node_t *current = head;
10
11 // loop until the sum of ticket values is > the winner
12 while (current) {
13 counter = counter + current->tickets;
14 if (counter > winner)
15 break; // found the winner
16 current = current->next;
17 }
18 // ’current’ is the winner: schedule it...

AOS@UC 8

https://stackoverflow.com/questions/2509679/how-to-generate-a-random-integer-number-fro
m-within-a-range

Implementation (Cont.)

p U: unfairness metric

w The time the first job completes divided by the time that the second job

completes.

p Example:

w There are two jobs, each jobs has runtime 10.

¢ First job finishes at time 10

¢ Second job finishes at time 20

w U= !"
#"
= 0.5

w U will be close to 1 when both jobs finish at nearly the same time.

AOS@UC 9

Lottery Fairness Study

p There are two jobs.

w Each jobs has the same number of tickets (100).

When the job length is not very long,
average unfairness can be quite severe.

AOS@UC 10

Stride Scheduling (deterministic Fair-share scheduler)

p Stride of each process

w Defined as (one large number) / (the number of tickets of the process)

w Example: one large number = 10,000

¢ Process A has 100 tickets à stride of A is 100

¢ Process B has 50 tickets à stride of B is 200

¢ Process C has 250 tickets à stride of C is 40

p A process runs, increment a counter(=pass value) for it by its stride.

w Pick the process to run that has the lowest pass value

current = remove_min(queue); // pick client with minimum pass
schedule(current); // use resource for quantum
current->pass += current->stride; // compute next pass using stride
insert(queue, current); // put back into the queue

A pseudo code implementation

AOS@UC 11

Stride Scheduling Example

Pass(A)
(stride=100)

Pass(B)
(stride=200)

Pass(C)
(stride=40)

Who Runs?

0
100
100
100
100
100
200
200
200

0
0

200
200
200
200
200
200
200

0
0
0
40
80
120
120
160
200

A
B
C
C
C
A
C
C
…

If new job enters with pass value 0,
It will monopolize the CPU!:

Stride scheduler requires global state (in
contrast with lottery)

AOS@UC 12

Linux Completely Fair Scheduler (CFS)

p 5% overall datacenter CPU time wasted in scheduler

p Focus on fairness and minimizing scheduling overhead

w Keep track of the (virtual) runtime of each process

w At scheduling time, chooses the process with the lowest virtual run time

w Time slice is variable: according number of ready to run processes (from

sched_latency (48 ms) for 1 process to min_granularity (6 ms) for

any number of processes

AOS@UC 13

Niceness and Weights

p Time slice and virtual runtime of the process can be affected by

weights (niceness)

p Typically, from -20 to 19

p By default, 0

AOS@UC 14

SCHEDULING: PROPORTIONAL SHARE 9

To address this issue, CFS adds another parameter, min granularity,
which is usually set to a value like 6 ms. CFS will never set the time slice
of a process to less than this value, ensuring that not too much time is
spent in scheduling overhead.

For example, if there are ten processes running, our original calcula-
tion would divide sched latency by ten to determine the time slice
(result: 4.8 ms). However, because of min granularity, CFS will set
the time slice of each process to 6 ms instead. Although CFS won’t (quite)
be perfectly fair over the target scheduling latency (sched latency) of
48 ms, it will be close, while still achieving high CPU efficiency.

Note that CFS utilizes a periodic timer interrupt, which means it can
only make decisions at fixed time intervals. This interrupt goes off fre-
quently (e.g., every 1 ms), giving CFS a chance to wake up and determine
if the current job has reached the end of its run. If a job has a time slice
that is not a perfect multiple of the timer interrupt interval, that is OK;
CFS tracks vruntime precisely, which means that over the long haul, it
will eventually approximate ideal sharing of the CPU.

Weighting (Niceness)

CFS also enables controls over process priority, enabling users or admin-
istrators to give some processes a higher share of the CPU. It does this
not with tickets, but through a classic UNIX mechanism known as the
nice level of a process. The nice parameter can be set anywhere from -
20 to +19 for a process, with a default of 0. A little oddly, positive nice
values imply lower priority, and negative values imply higher priority, just
another random thing you have to remember.

CFS maps the nice value of each process to a weight, as shown here:

static const int prio_to_weight[40] = {
/* -20 */ 88761, 71755, 56483, 46273, 36291,
/* -15 */ 29154, 23254, 18705, 14949, 11916,
/* -10 */ 9548, 7620, 6100, 4904, 3906,
/* -5 */ 3121, 2501, 1991, 1586, 1277,
/* 0 */ 1024, 820, 655, 526, 423,
/* 5 */ 335, 272, 215, 172, 137,
/* 10 */ 110, 87, 70, 56, 45,
/* 15 */ 36, 29, 23, 18, 15,

};

These weights allow us to compute the effective time slice of each pro-
cess (as we did before), but now accounting for their priority differences.
The formula used to do so is as follows:

time slicek =
weightk∑
n−1

n=0
weighti

· sched latency (9.1)

Let’s do an example to see how this works. Assume there are two jobs,
A and B. A, because its our most precious job, is given a higher priority by

c© 2008–18, ARPACI-DUSSEAU

THREE

EASY

PIECES

Example

p Two process: A (niceness -5) B (niceness 0)

p weightA=3121, weightB=1024

p time_sliceA=3/4 (36 ms), time_sliceB=1/4 (12 ms) of

sched_latency (48 ms)

p Also, virtual runtime changes with weights

p A accumulates virtual runtime at 1/3 of B

AOS@UC 15

Linux Completely Fair Scheduler (CFS)

p Minimal scheduler overhead

w Data structures should be scalable: No lists

w CFS uses a balanced tree (red-black tree) of the ready-to-run processes

w O(log n) insertions and searches

p Many more details

w I/O is handled altering the vruntime of the awaken process to the minimum value in the

tree

w Heuristics for multi-CPU scheduling (cache affinity, frequency, core complexity…)

w Cooperative multi-process schedule

w …

AOS@UC 16

SCHEDULING: PROPORTIONAL SHARE 11

1

5

9

10

14

18

17 22

21 24

Figure 9.5: CFS Red-Black Tree

the list, looking for the right spot to insert it, an O(n) operation. Any
search is also quite inefficient, also taking linear time on average.

Keeping the same values in a red-black tree makes most operations
more efficient, as depicted in Figure 9.5. Processes are ordered in the tree
by vruntime, and most operations (such as insertion and deletion) are
logarithmic in time, i.e., O(log n). When n is in the thousands, logarith-
mic is noticeably more efficient than linear.

Dealing With I/O And Sleeping Processes

One problem with picking the lowest vruntime to run next arises with
jobs that have gone to sleep for a long period of time. Imagine two pro-
cesses, A and B, one of which (A) runs continuously, and the other (B)
which has gone to sleep for a long period of time (say, 10 seconds). When
B wakes up, its vruntime will be 10 seconds behind A’s, and thus (if
we’re not careful), B will now monopolize the CPU for the next 10 sec-
onds while it catches up, effectively starving A.

CFS handles this case by altering the vruntime of a job when it wakes
up. Specifically, CFS sets the vruntime of that job to the minimum value
found in the tree (remember, the tree only contains running jobs) [B+18].
In this way, CFS avoids starvation, but not without a cost: jobs that sleep
for short periods of time frequently do not ever get their fair share of the
CPU [AC97].

Other CFS Fun

CFS has many other features, too many to discuss at this point in the
book. It includes numerous heuristics to improve cache performance, has
strategies for handling multiple CPUs effectively (as discussed later in the
book), can schedule across large groups of processes (instead of treating
each process as an independent entity), and many other interesting fea-
tures. Read recent research, starting with Bouron [B+18], to learn more.

c© 2008–18, ARPACI-DUSSEAU

THREE

EASY

PIECES

This lecture slide set is used in AOS course at University of Cantabria. Was initially developed for

Operating System course in Computer Science Dept. at Hanyang University. This lecture slide set is

for OSTEP book written by Remzi and Andrea Arpaci-Dusseau (at University of Wisconsin)

AOS@UC 17

