
6. Mechanism: Limited Direct Execution
Operating System: Three Easy Pieces

AOS@UC 1

How to efficiently virtualize the CPU with control?

p The OS needs to share the physical CPU by time sharing.

p Issue

w Performance: How can we implement virtualization without adding

excessive overhead to the system?

w Control: How can we run processes efficiently while retaining control over

the CPU?

AOS@UC 2

p Just run the program directly on the CPU.

Direct Execution (without limits!)

OS Program

1. Create entry for process list
2. Allocate memory for program
3. Load program into memory
4. Set up stack with argc / argv
5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

AOS@UC 3

Without limits on running programs,
the OS wouldn’t be in control of anything and

thus would be “just a library”

Problem 1: Restricted Operation

p What if a process wishes to perform some kind of restricted operation

such as …

w Issuing an I/O request to a disk

w Gaining access to more system resources such as CPU or memory

p Solution: Using protected control transfer (processor has to support it)

w User mode: Applications do not have full access to hardware resources.

w Kernel mode: The OS has access to the full resources of the machine

AOS@UC 4

System Call

p Allow the kernel to carefully expose certain key pieces of functionality

to user program, such as …

w Accessing the file system

w Creating and destroying processes

w Communicating with other processes

w Allocating more memory

AOS@UC 5

But, why they look like a regular procedure call “sometimes”
(e.g. libc calls)?

System Call (Cont.)

p Trap instruction

w Jump into the kernel (how to tell where?)

w Raise (the processor) privilege level to kernel mode

p Return-from-trap instruction

w Return into the calling user program

w Reduce (the processor) privilege level back to user mode

AOS@UC 6

Limited Direction Execution Protocol

AOS@UC 7

OS @ boot
(kernel mode)

Hardware

initialize trap table
remember address of …
syscall handler

OS @ run
(kernel mode)

Hardware Program
(user mode)

Run main()
…
Call system
trap into OS

restore regs from kernel stack
move to user mode
jump to main

Create entry for process list
Allocate memory for program
Load program into memory
Setup user stack with argv
Fill kernel stack with reg/PC
return-from -trap

Limited Direction Execution Protocol (Cont.)

AOS@UC 8

Free memory of process
Remove from process list

…
return from main
trap (via exit())

restore regs from kernel stack
move to user mode
jump to PC after trap

Handle trap
Do work of syscall
return-from-trap

save regs to kernel stack
move to kernel mode
jump to trap handler

OS @ run
(kernel mode)

Hardware Program
(user mode)

(Cont.)

Problem 2: Switching Between Processes

p How can the OS regain control of the CPU so that it can switch

between processes?

w A cooperative Approach: Wait for system calls

w A Non-Cooperative Approach: The OS takes control

AOS@UC 9

A cooperative Approach: Wait for system calls

p Processes periodically give up the CPU by making system calls such

as yield.

w The OS decides to run some other task.

w Application also transfer control to the OS when they do something illegal.

¢ Divide by zero

¢ Try to access memory that it shouldn’t be able to access

w Ex) Early versions of the Macintosh OS, The old Xerox Alto system

AOS@UC 10

A process gets stuck in an infinite loop.
à Reboot the machine

A Non-Cooperative Approach: OS Takes Control

p A timer interrupt

w During the boot sequence, the OS start the timer (hardware).

w The timer raise an interrupt every so many milliseconds. (hardware)

w When the interrupt is raised :

¢ The currently running process is halted.

¢ Save enough of the state of the program

¢ A pre-configured interrupt handler in the OS runs.

AOS@UC 11

A timer interrupt gives OS the ability to
run again on a CPU.

Saving and Restoring Context

p Scheduler makes a decision:

w Whether to continue running the current process, or switch to a different

one.

w If the decision is made to switch, the OS executes context switch.

AOS@UC 12

Context Switch

p A low-level piece of assembly code

w Save a few register values for the current process onto its kernel stack

¢ General purpose registers

¢ PC

¢ kernel stack pointer

w Restore a few for the soon-to-be-executing process from its kernel stack

w Switch to the kernel stack for the soon-to-be-executing process

AOS@UC 13

Limited Direction Execution Protocol (Timer interrupt)

AOS@UC 14

OS @ boot
(kernel mode)

Hardware

initialize trap table
remember address of …
syscall handler
timer handler

OS @ run
(kernel mode)

Hardware Program
(user mode)

start interrupt timer
start timer
interrupt CPU in X ms

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Process A
…

Limited Direction Execution Protocol (Timer interrupt)

AOS@UC 15

OS @ run
(kernel mode)

Hardware Program
(user mode)

(Cont.)

Handle the trap
Call switch() routine
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)
switch to k-stack(B)

return-from-trap (into B)
restore regs(B) from k-stack(B)
move to user mode
jump to B’s PC

Process B
…

The xv6 Context Switch Code

AOS@UC 16

1 # void swtch(struct context **old, struct context *new);
2 #
3 # Save current register context in old
4 # and then load register context from new.
5 .globl swtch
6 swtch:
7 # Save old registers
8 movl 4(%esp), %eax # put old ptr into eax
9 popl 0(%eax) # save the old IP (pop from stack to mem)
10 movl %esp, 4(%eax) # and stack
11 movl %ebx, 8(%eax) # and other registers
12 movl %ecx, 12(%eax)
13 movl %edx, 16(%eax)
14 movl %esi, 20(%eax)
15 movl %edi, 24(%eax)
16 movl %ebp, 28(%eax)
17
18 # Load new registers
19 movl 8(%esp), %eax # put new ptr into eax
20 movl 28(%eax), %ebp # restore other registers
21 movl 24(%eax), %edi
22 movl 20(%eax), %esi
23 movl 16(%eax), %edx
24 movl 12(%eax), %ecx
25 movl 8(%eax), %ebx
26 movl 4(%eax), %esp # stack is switched here
27 pushl 0(%eax) # return addr put in place
28 ret # finally return into new ctxt

Current xv6 Code

AOS@UC 17

In proc.h
// Don't need to save %eax, %ecx, %edx, because the 46

// x86 convention is that the caller has saved them.

No actual change
to new %eip, because

we need to “switch”
memory addressing
space before
(done in the scheduler
switchkvm();)

Worried About Concurrency?

p What happens if, during interrupt or trap handling, another interrupt

occurs?

p OS handles these situations:

w Disable interrupts during interrupt processing

w Use a number of sophisticate locking schemes to protect concurrent

access to internal data structures.

AOS@UC 18

p Disclaimer: This lecture slide set is used in AOS course in University of Cantabria. Was

initially developed for Operating System course in Computer Science Dept. at Hanyang

University. This lecture slide set is for OSTEP book written by Remzi and Andrea Arpaci-

Dusseau (at University of Wisconsin)

AOS@UC 19

