
4. The Abstraction: The Process
Operating System: Three Easy Pieces

AOS@UC 1

How to provide the illusion of many CPUs?

p CPU virtualizing

w The OS can promote the illusion that many virtual CPUs exist.

w Time sharing: Running one process, then stopping it and running another

¢ The potential cost is performance.

AOS@UC 2

A Process

p Comprising of a process:

w Memory (address space)

¢ Instructions

¢ Data section

w Registers (processor architectural state (?))

¢ Program counter

¢ Stack pointer

¢ …

AOS@UC 3

A process is a running program.

Process API

p These APIs are available on any modern OS.

w Create

¢ Create a new process to run a program

w Destroy

¢ Halt a runaway process

w Wait

¢ Wait for a process to stop running

w Miscellaneous Control

¢ Some kind of method to suspend a process and then resume it

w Status

¢ Get some status info about a process

w …

AOS@UC 4

Process Creation

1. Load a program code into memory, into the address space of the

process.

w Programs initially reside on disk in executable format (code + static data).

w OS perform the loading process lazily.

¢ Loading pieces of code or data only as they are needed during program

execution.

2. The program’s run-time stack is allocated.

w Use the stack for local variables, function parameters, and return address.

w Initialize the stack with arguments à argc and the argv array of main()

function

AOS@UC 5

Process Creation (Cont.)

3. The program’s heap is created.

w Used for explicitly requested dynamically allocated data.

w Program request such space by calling malloc() and free it by calling

free().

4. The OS do some other initialization tasks.

w input/output (I/O) setup

¢ Each process by default has three open file descriptors.

¢ Standard input, output and error

5. Start the program running at the entry point, namely main().

w The OS transfers control of the CPU to the newly-created process.

AOS@UC 6

Loading: From Program To Process

AOS@UC 7

code
static data

heap

stack

Process

Memory

code
static data

heap

Program

Disk

Loading:
Takes on-disk program
and reads it into the

address space of
process

CPU

Process States

p A process can be one of three states.

w Running

¢ A process is running on a processor.

w Ready

¢ A process is ready to run but for some reason the OS has chosen not to run it

at this given moment.

w Blocked

¢ A process has performed some kind of operation.

¢ When a process initiates an I/O request to a disk, it becomes blocked and thus

some other process can use the processor.

AOS@UC 8

Process State Transition

AOS@UC 9

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate

Data structures

p The OS has some key data structures that track various relevant pieces

of information.

w Process list

¢ Ready processes

¢ Blocked processes

¢ Current running process

w Register context

p PCB(Process Control Block)

w A C-structure that contains information about each process.

AOS@UC 10

Example) The xv6 kernel Proc Structure

AOS@UC 11

// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context {

int eip; // Index pointer register
int esp; // Stack pointer register
int ebx; // Called the base register
int ecx; // Called the counter register
int edx; // Called the data register
int esi; // Source index register
int edi; // Destination index register
int ebp; // Stack base pointer register

};

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,

RUNNABLE, RUNNING, ZOMBIE };

Example) The xv6 kernel Proc. Structure (Cont.)

AOS@UC 12

// the information xv6 tracks about each process
// including its register context and state
struct proc {

char *mem; // Start of process memory
uint sz; // Size of process memory
char *kstack; // Bottom of kernel stack

// for this process
enum proc_state state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
struct context context; // Switch here to run process
struct trapframe *tf; // Trap frame for the

// current interrupt
};

p This lecture slide set is used in AOS course in University of Cantabria. Was initially developed

for Operating System course in Computer Science Dept. at Hanyang University. This lecture

slide set is for OSTEP book written by Remzi and Andrea Arpaci-Dusseau (at University of

Wisconsin)

AOS@UC 13

